
Computer and Information Science; Vol. 5, No. 4; 2012
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

83

Morpho-Syntactic Analysis Framework for Tone Language
Text-to-Speech Systems

Moses Ekpenyong1 & Emem Obong Udoh2
1 School of Informatics, University of Edinburgh, EH8 9AB, Edinburgh, UK
2 Department of Linguistics and Nigerian Languages, University of Uyo, Uyo, Nigeria

Correspondence: Moses Ekpenyong, Academic Visitor, Centre for Speech Technology Research (CSTR),
Informatics Forum, University of Edinburgh, EH8 9AB, Edinburgh, UK. E-mail: mosesekpenyong@gmail.com;
ekpenyong_moses@yahoo.com

Received: September 19, 2011 Accepted: September 30, 2011 Online Published: June 11, 2012

doi:10.5539/cis.v5n4p83 URL: http://dx.doi.org/10.5539/cis.v5n4p83

Abstract

This paper presents a morpho-syntactic analysis framework using the data-driven methodology. The proposed
framework complements the front-end design of a recent text-to-speech (TTS) project and is generic for other
tone language systems. We experiment the design for Ibibio (ISO 693-2: nic; Ethnologue: IBB), a Lower Cross
language of the (New) Benue Congo language family, widely spoken in the south-eastern region of Nigeria.
Implementation shows that the design is sufficient for morpho-syntactic parsing and useful for prosody
improvement in TTS systems. Also, the methodology adopted detaches a greater part of the linguistic features
specification from the program code. This allows for easy morphological alterations of utterances and replication
of the synthesizer for other languages.

Keywords: NLP, FST, syntax and morphology, speech synthesis, data-driven approach

1. Introduction

Natural language processing (NLP) is a field of computational linguistics concerned with the interactions
between computers and human (natural) languages. In theory, NLP is an attractive method of human-computer
interaction (HCI). Natural language understanding is sometimes referred to as an ‘AI-complete’ problem
(Shapiro, 1992), because they seem to require extensive knowledge about the outside world and the ability to
manipulate it. One most important reason for not reaching the desired goal of NLP, i.e. achieving a design or
system capable of analysing, understanding and generating natural languages with precision, is that natural
languages are ambiguous. A lot of effort within NLP has been made to resolve the problem of ambiguity. Basic
research areas in NLP concentrate on automatic determination of some structure(s) of written or spoken
languages on the various linguistic levels such as morphology, syntax, semantics or discourse. For instance,
part-of-speech taggers have been used to resolve lexical ambiguities, and shallow parsers to resolve structural
ambiguities.

In this paper, we focus on language analyzer construction. There are two main methodologies for building the
knowledge-base of a language analyzer: the linguistic approach and the data-driven approach. The linguistic
approach lends itself on the linguist’s (potentially corpus-based) abstractions about the paradigms and syntagms
of the language. Distributional generalizations are manually coded as a grammar - a system of constraint rules
used for discarding contextually illegitimate analyses (Voutilainen & Jarvenen, 1995; Karlsson, Voutilainen,
Heikkila, & Anttila, 1995). This approach is however labour-intensive, as much skill and effort are required to
write an exhaustive grammar. The data-driven approach automatically derives frequency-based information from
corpora. The learning corpus can contain plain text, but better results seem achievable with annotated corpora
(Merialdo, 1994; Elworth, 1994; Megyesi, 2002). The corpus-based information typically contain sequences of
tags or words with well known exceptions and can either be represented as neural networks (Eineborg &
Gambäck, 1994; Schmid, 1994), local rules (Brill, 1992) or collocation matrices (Garside, 1987). This approach
requires no human effort for rule writing and can easily be adapted to different NLP tasks such as part-of-speech
(PoS) tagging and shallow parsing (Megyesi & Carlson, 2002). However, considerable efforts may be required
for determining a workable tag-set (Cutting, 1994) and training corpus annotation. The data-driven approach to
syntactic analysis (parsing) is a very active area of research, but relatively little has been done in applying a

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

84

similar methodology to morphology (Chrupala, 2006; De Pauw & De Schryver, 2008). One major reason for this
may be due to the fact that most research publications deal with the English language, which does not have a
complex inflectional morphology. In African languages, the number of inflected word forms is far larger than for
English and Chinese due to the agglutinative inflectional morphology and complex subject-verb-object person
concord, which adds further difficulty to morphological tone assignment and produces problems of text corpus
sparseness (Gibbon, 2001).

We propose in this paper, a generic framework that is useful for prosody improvement in TTS systems. We have
in a recent TTS project implemented a parser for grapheme-to-phoneme (g2p) conversion (Ekpenyong,
Udoinyang, & Urua, 2009) and integrated a syllabification FST into the TTS system. Though the implementation
is done for the Ibibio language (used as a benchmark for other tone languages), we adopt a data-driven approach
that enables easy replication of the TTS system for other tone languages.

2. Literature Review

Parsing (or grammatical analysis of sentences) has been a subject of intense and widespread research for at least
three decades now. Many parsers of natural languages have been designed and either used as a research avenue
to explore various linguistic or computational theories or as a component of large database programs. The
implementation of syntactic parsers constitutes a major task in compiler construction and has produced several
classic methods and algorithms used for syntactic parser construction (Appel, 1997; Neto, Pariente, & Leonardi,
1999; Tremblay & Sorenson, 1985; Andrew, 1997). Parsing uncovers the hidden structure of linguistic input. In
many applications involving natural languages, the underlying predicate-argument structure of sentences can be
useful. The syntactic analysis of a language provides a means of explicitly discovering the various
predicate-argument dependencies, which may exist in a sentence. The major bottleneck in parsing natural
language as earlier mentioned is the pervasiveness of ambiguity, which constitutes a major problem, since the
most plausible analysis has to be chosen from an exponentially large corpus of alternative analyses. Parsing also
recovers information that is not explicitly specified in the input sentence. This implies that a parser requires
some knowledge in addition to the input sentences, about the kind of syntactic analysis which should be
produced as output. One method of providing such knowledge to the parser is to write a grammar of the
language – a set of rules for syntactic analysis. The grammar rules of a language for instance, can be written
using a context-free grammar (CFG) (Sipser, 2006; Flajolet, 1987).

In many languages, the notion of splitting up tokens using white spaces is problematic since each word can
contain several components called morphemes. In this case, the meaning of a word can be thought of as being
composed of a combination of meanings of the morphemes. Henceforth, we regard a word as being decomposed
into a stem associated with several morphemes. In order to tackle the disambiguation problem for morphology,
the problem of splitting a word into the most likely sequence of morphemes can be reduced to a (very complex)
part-of-speech tagging task. The word itself is not split into morphemes, but each word is tagged with a PoS tag,
which encodes a lot of information about the morpheme. This enriched tag set can be a rich source of features for
a statistical parser, for a highly inflected language. In Seara, Pacheco, Kafta, Seara Jr. and Seara (2010), an
ad-hoc morpho-syntactic parser to a TTS system for Brazilian Portuguese has been developed. Their parser is
composed of a dictionary and a set of four level structured rules and uses a methodology, which creates large
annotated dataset and an incremental development of rules for morpho-syntactic classification.

Some sentences are inherently ambiguous and unpredictable. English sentences for instance, may result in
hundreds, perhaps thousands of syntactic parse trees for certain very natural sentences. This fact has remained a
major obstacle confronting natural language processing; especially when a large percentage of the syntactic parse
trees are enumerated during semantic/pragmatic processing. In English, syntactic ambiguity may grow
‘combinatorially’ with the number of prepositional phrases (Church & Patil, 1982). Therefore enumerating the
parse trees may fail to capture the relevant generalization that prepositional phrases (PPs) are ‘every way
ambiguous’, or more precisely, the set of parse trees over i PPs is the same as the set of binary trees, which can
be constructed over i terminal elements. Applying a formal power series encapsulates the ambiguity response of
the system’s grammar to all possible input sentences. Some methods for dealing with syntactic ambiguity in
ways which exploit certain regularities among alternative parse trees have been proposed in Church and Patil
(1982). These regularities are expressed as linear combinations of augmented transition networks (ATNs)
(Wanner, 1980), and also as sums and products of formal power series (Flajolet, 1987; Caprini, Fischer, & Vrkoc,
2010).

Morpho-syntactic classification is important to improve prosody of synthesized speech and the pronunciation of
words subject to vocalic alternation (Seara, Pacheco, Kafta, Seara, & Seara, 2010). A number of

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

85

morpho-syntactic parsers have been proposed for TTS systems (Bick, 2006; Ribeiro, Oliveira, & Trancoso,
2003). These systems search for better prosodies through a more detailed linguistic description, avoiding
artificially changing the acoustic parameters of synthesized speech. Simple approaches to morphological analysis
deal only with the removal of endings and suffixes by means of a generic pre-defined suffix-tree, without
considering the proper analysis of prefixes and compound words (Dasgupta & Ng, 2007). One further
disadvantage besides this missing precision concerns the inherent syntactic and semantic information comprised
in the removed endings, which results in the lack of flexibility in the resulting semantic representation. That is,
there is no possibility to deal with cases where a derived word inherits a new specific meaning different from the
word sense which the combination of the stem and the suffix in question would suggest. To overcome these
shortcomings, the so-called lexical approach (Whitelock, 1988), which assigns all morphological features
directly to the corresponding canonical forms in the dictionary, can be applied.

However, the most competent approach to implementing morphological analysis is the use of Finite State
Transducers (FSTs). Useful researches applying this technique can be found in Minnen, Carroll and Pearce
(2000), Ganapathiaraju and Levin (2006), Menon, Saravanan, Loganathan and Soman (2009). There are also a
number of frameworks for syntactic analysis which have been used as bases for NLP. Most of these frameworks
suffer from serious meta-theoretical or practical defects, especially in the area of power and descriptive accuracy.
Several recent syntactic frameworks include: lexical-functional grammar (Kaplan & Bresman, 1982),
generalized phrase structure grammar (Gazdar, Klein, Pullum, & Sag, 1985) and lexicase (Starosta, 1985).
Data-driven framework algorithms for morpho-syntactic analysis are available in Starosta and Nomura (1986),
Kumar, Dhanalakshmi and Rajendran (2010).

More recently, research on computational syntax/morphology has been dominated by unsupervised approaches
(Pauw & Wagacha, 2007; Wagacha & Abade, 2007; Lavalle & Langlais, 2009; Calvo, Gambino, Gelbukh, &
Inui, 2011). These methods attempt to automatically induce the morphological properties of a language on the
basis of raw, un-annotated text, using minimum-distance edit metrics and pattern-matching/grammar inference
techniques. The major contribution of this research is speech quality improvement. We attain this by tackling
prosody – a key factor responsible for naturalness of TTS products. We also adopt a state-of-the-art approach
which provides a benchmark for other tone languages. The paper will also bootstrap further research in the area
of syntax/morphology of less-resource languages. Initial micro-voices obtained using the framework (c.f.
Ekpenyong, Urua, Udosen, & Udoh, 2011) sounds impressive and is currently being improved upon.

This paper is organized in five folds: (i) It discusses the Ibibio morphology; (ii) It studies the language’s phrase
structure; (iii) It provides a procedure detailing the research approach adopted; (iv) It experiments the proposed
framework with a case study’s language (Ibibio); (v) It concludes and highlights future research directions.

3. The Ibibio Morphology

In this section, we discuss the morphology of Ibibio, a Lower Cross language spoken by approximately four
million (4,000,000) speakers in the south-eastern region of Nigeria. Ibibio is a classical terraced tone system
(Urua, 2001). Though the Ibibio language has received significant attention in the area of syntax/morphology
(Simmons, 1957; Urua, 1990; Akinlabi & Urua, 2002), not much has been done towards building computational
resources for the language. We present in the following section, a useful framework for the language’s phrase
structure grammar. The aim is to enrich the ongoing language technology collaboration projects, which have
projected Ibibio both locally and internationally. Ibibio is a morphologically-rich and inflectional language that
has a lot of potentials for language technology research and development. We discuss this concept under the
following word structure:

Affixation

In Ibibio, given a root word (verb) such as dí (come), the inflectional prefixes á-, é-, í- and ń- can be added to
change its form, and these forms depend on the number and person as illustrated in 1.(a)-(g):

1. (a) dí – come

 (b) á!dí – s/he comes (3rd person singular)

 (c) é!dí – they come (3rd person plural)

 (d) ń!dí – I come (1st person singular)

 (e) édí – you come (2nd person plural)

 (f) ádí – you come (2nd person singular)

 (g) ídí – we come (3rd person plural)

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

86

A suffix may be added to the prefix/root to show negation, as in:

2. (a) ń!dí – I come

 (b) ńdíhé – I am not coming

Tense could also be shown in Ibibio using the inflectional prefix as follows:

3. (a) sé – look

 (b) á-mà á!sé – he had looked (past)

 (c) á-yà á!sé – he will look (future)

 (d) á!sé – he looks (present)

4. (a) kòp – hear

 (b) m-mé-kòp – I have heard (present perfect)

 (c) ŋ-́kòp – I hear (present)

 (d) ń-yǎkòp – I will hear (future)

Mood could also be shown in Ibibio using the inflectional prefix:

5. (a) fèghé – run

 (b) ḿ-kpǎ-fèghé – I might run (uncertainty)

 (c) ń-yâ-fèghé – I will run (certainty)

In examples 2-5, the personal markers are the prefixes: ḿ-, ń-, ŋ-́, á-, etc. In Ibibio, they function in most cases
as the first constituent of any inflection before any other inflectional affix is added to a root word. The only
exception is when a negative marker in the imperative form is added to the root word, for instance:

6. (a) dá – stand

 (b) kûdá – don’t stand

7. (a) tóp – throw

 (b) kûtóp – don’t throw

Aspect could also be marked in Ibibio using the inflectional prefix:

8. (a) díá – eat

 (b) á-dí-dìà ḿkpó ̣ n ̀tè ìnọ́ – he now eats like a thief (inceptive)

 (c) á-sì-dìà ḿkpó ̣ n ̀tè ìnọ́ – he usually eats like a thief (habitual)

Reduplication

This refers to full or partial repetition of a root word or base (Katamba 1993). The repeated part of the word
serves some inflectional or derivational purpose. Examples are:

9. (a) wèt – write

 (b) áwèéwèt – he is writing

10. (a) fáák – put in between two things

 (b) fááfáák – put in between two things (emphasis)

11. (a) bò ̣ – receive, get it

 (b) bòọ́ḅò ̣ – receive, get it (instead of retrieving) (Essien, 1990; Essien, 2010)

In examples 9-11, notice that the roots have been repeated to create the intended meaning and the reduplicative
morphemes always come before the root word in all cases.

Compounding

Ibibio nouns (stand alone) can also be combined to form another root word thus:

12. (a) úfòḳ – house

 (b) íbóḳ – medicine/drug

 (c) úfòḳíbò ̣k – hospital

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

87

13. (a) údúk – rope

 (b) íkó ̣t – bush

 (c) údúkíkòṭ – snake

We observe that the words in 12, 13. (c) are derivations from 12, 13. (a) and (b) respectively. Both morphemes in
12, 13. (c) are called bound morphemes, since they can’t stand alone in compound context but could as single
words.

4. Ibibio Phrase Structure Grammar

Syntactic analysis could be done using any of these approaches:

(i) use of dependency graphs: connecting a word – the head of a phrase – with the dependents in that phrase;

(ii) use of phrase structure trees: traditional sentence diagrams which partition a sentence into constituents and
larger constituents are formed by merging smaller ones. This approach also typically incorporates ideas from
generative grammar (from linguists), to assist it deal with displaced constituents or apparent long distance
relationships between heads and constituents.

Phrase structure rules define a language’s grammar and generate the deep structures of its sentences. They
constitute re-write rules employing symbols for its operations. We propose a phrase structure that extends
Essien’s (1990) phrase structure grammar (PSG) for simple-positive Ibibio sentences. Essien’s (1990) PSG is as
shown in Figure 1.

4.1 Grammar Construction and Productions Labelling

In our proposal, we also consider inflection which is important in language morphology. An Ibibio sentence can
now be viewed as a field of sets with three subsets (S -> <NP,INFL,VP>). The initial symbol (S) exists, and
generates more strings of symbols called productions. Using rewrite rule (Freidin, 1992), we construct an
extended phrase structure grammar (PSG) for Ibibio as shown in Figure 2. The phrase structure in Figure 2 is
comprehensive for the language and considers all the possible productions of the language. The productions are
also properly labeled to distinguish top-level productions from lower-level transitions. Also, our grammar
structure can generate both simple and complex sentences in Ibibio. A symbol table which defines the various
notations in the PSG is shown in Table 1.

Table 1. Symbol table

Symbol Definition
S Sentence
NP Noun phrase
INFL Inflection
VP Verb phrase
COP.V Copulative verb
ADV.P Adverbial phrase
COMP_P Complement projection
VP1 Verb phrase prime
DET Determinant
TENSE Tense
AGR Agreement
ASP Aspect
INCEPT Inceptive
HABIT Habitual
COMPL Completive
PP Prepositional phrase
PREP Preposition
AGR-S Subject agreement
PERS Person
NUM Number
TP Tense projection
ADJ.P Adjectival phrase
ADJ Adjective
N Noun
ADV Adverb
NEG_P Negation projection

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

88

S -> <NP><VP>

NP -> <N><DET>|<QUANT><N><DET>

VP -> <AUX><COP|V>|<AUX><V><NP>|<AUX><V>

|<AUX><V>|<AUX><PRED>

DET -> <ART|DEM>

AUX -> <CONC><MOD>|<CONC><TENSE>|<CONC><ASP>

|<CONC><MOD><TENSE>|<CONC><TENSE><ASP>

TENSE -> <PAST|PRESENT|FUTURE>

ASP -> <INCEPT|HABIT|COMPL>

PRED -> NP

Figure 1. Essien’s (1990) Ibibio phrase structure

S -> <NP><INFL><VP|VP1>

NP -> <QUANT><N*>|<QUANT><N><PRO>

|<QUANT><PRO>|<ADJ.P><N*>|<N>

|<N><PRO>|<N><PRO><AJN>|<N><AJN>|<PRO>

|<DET><N>|<PP><N>

INFL -> <AGR><TENSE>|<AGR><MOD>|<AGR><ASP>

VP -> <COP.V|V*>|<V*><ADJ.P>|<V*><NP>

|<V*><ADV.P>|<V*><COMP_P>

VP1 -> <V><AGR-S>|<V><NP><AGR-S>

DET -> <ART|DEM>

TENSE -> <PRESENT|PAST|FUTURE>

AGR -> <PERS><NUM>

ASP -> <INCEPT|HABIT|COMPL|PROG>

PP -> <PREP><NP>

AGR-S -> <PERS><NUM><TP>

ADJ.P -> <ADJ><N>

ADV.P -> <ADV><ADV>

TP -> <TENSE><NEG_P>

NEG_P -> <NEG><VP>

COMPL_P -> <COMP>S

Figure 2. Extended Ibibio phrase structure

Figures 3-6 are sample syntax trees constructed using the above rules. They show the different sentence
productions derived from the extended PSG in Figure 2. The sentences are written in ‘Ibibio SAMPA’, christened
after a collaborative language documentation/speech synthesis research project. The Ibibio SAMPA table is
shown in Table 2.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

89

S

NP INFL VP

AGR TENSE V NP COMP_P

PRO PERS NUM PAST N COMPL S

NP INFL VP

DET N AGR V NP

PER NUM N PP

3 SG 3 PL PREP NP

N PRO AJN

anye a ma nam aNwaNa ke mme owo e nie utre ke usVN OmmO keedkeed
ubOk

Figure 3. Syntax tree for Ibibio sentence: anye ama nam aNwaNa ke mme owo enie utreubOk ke usVN OmmO
keedkeed ‘He made known that people have reward in their respective ways’

S

NP VP

V NP AGR-S

PERS NUM TP

2 SG TENSE NEG.P

PRES NEG VP

N V ADJ

Ø bON akam u ku kpa mba

Figure 4. Syntax tree for the sentence: bON akam kuukpa mba ‘pray without ceasing’

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

90

S

NP INFL VP1

AGR TENSE ASP V AGR-S

PERS NUM PAST COMP PERS NUM VP

3 SG 3 SG V NP

N

Ø a ke fee feRe a yak ikOt abasi

Figure 5. Syntax tree for the sentence: akefeefeRe ajak ikOt abasi ‘He/She hurriedly released God’s people’

S

NP INFL VP

PERS NUM MOD V NP

1 SG N

Ø m kpa dia mkpO

Figure 6. Syntax tree for the sentence: mkpa dia mkpO ‘I should eat’

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

91

Table 2. Ibibio SAMPA table

5. Methodology

The purpose of a morphological analyzer is to split an input word into morphemes and then figure out the
grammatical categories of the word. Morphological analyzers may be called either manually or automatically by
the syntactic analyzer. The description of the morphology of a natural language requires special formalism.
There are two main constructions in the grammar file of a morphological analyzer: the morpheme class
definition and the morphological rules. The morpheme class definition is used to list all possible morphemes of a
given morpheme class. It is possible to declare an empty morpheme, which implies that the morpheme class may
be omitted in the morphological rules. A formal syntax for morpheme class definition is:

 <morpheme-definition> ::= <identifier> = {<list_of_morphemes>}

 <list_of_morphemes> ::= <morpheme> { , <morpheme>}

 <morpheme> ::= <string> <feature_structure>

A feature structure is a specific data structure. It is a list of ‘attribute-value’ pair. The value of an attribute (field)
may either be atomic or a feature structure itself (i.e. has a recursive definition). This allows for the building of
complex or deeply nested sub-structures. Feature structures are widely used in NLP. They are mostly used:

(i) to hold initial properties of lexical entries in the dictionary

(ii) to place constraints on the parser rules

(iii) to pass (or reference) data across different levels of analysis

Morphological rules are defined as follows:

N

i i
i 1

word M { C }

 (1)

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

92

Where Mi are morpheme classes and Ci are optional constraints.

A syntactic analyzer scans the natural language sentences and outputs a parse tree, with information about the
sentence. To accomplish this task, syntactic analyzers require a grammar file and a dictionary (or may use a
morphological analyzer in place of a complete dictionary). Grammar rules for syntactic analyzers are written as
CFG rules. However, there may be constraints and symbol position regulators. The rule can be written according
to these constructions:

N

i i
i 1

S A { C }

 (2)

N

i i
i 1

S A : R : { C }

 (3)

Where S is a left hand side (LHS) non-terminal symbol, Ai are right hand side (RHS) terminal or non-terminal
symbols, Ci are constraints, R is a set of symbol position regulators. Position regulators declare the order of RHS
symbols in the rule, thus creating a non-fixed word ordering. There are two types of position regulators:

(i) i jA A , means that Ai must be placed somewhere before the symbol Aj

(ii) i jA A , means that Ai must be placed exactly before the symbol Aj

It would be an excellent research product to mplementing morpho-syntactic parsers which can automatically
construct syntax acceptors from grammars extension and allow for the generation of syntax trees, while
accepting input sentences. The transducer representing the desired parser should activate the semantic actions
while the parsing tree is automatically generated for a given input sentence. As a rule of thumb, the design
process can be defined in the following order: construct the grammar -> label the productions -> group
production rules -> remove self recursion -> assign state -> build the transducer. The defined order represents an
informal but concise process which steps may be interchanged depending on the designer’s preference. In this
paper for instance, we prefer building the transducer before productions grouping.

The theory of deductive databases can also be implemented within this framework. This theory has been a topic
of intensive research within the last couple of years and has resulted in several successful prototype systems
(Naqvi & Tsur, 1989). The theory combines the advantages of relational database algebra and logic programming.
Four main components are involved:

(i) a schema of base predicates

(ii) a set of facts representing the data

(iii) a set of rules deriving the predicates

(iv) a set of query interface for generating access to stored data (for corpus input)

The theory is important for the following reasons:

(i) possibility of formulating recursive queries, i.e. transitive relationships are possible

(ii) non-monotonic operation of negation is supported

(iii) not only atomic object types, but also complex object types, like sets, trees or lists can be used for data
modelling

(iv) updates are performed by means of declarative specifications

(v) imperative predicates are available for users of conventional control structures (e.g. if-then-else)

(vi) declarative semantics are preserved

The current design is built to accommodate the implementation of this theory (see Table 1 and the accompanying
extraction rules)

5.1 Ibibio Phrase Structure FSTs Design (Building the Transducer)

We present in Figures 7-11, Finite State Transducers (FSTs) which illustrate top-level components of the
extended PSG. Thick lines represent top-level productions while broken lines indicate sub transitions. Formal
definitions according to the general classification of Finite State Machine (FSM) logic can be found in (Sipser,
2006). Details of low-level productions can be found in Ekpenyong, Urua, Udosen and Udoh (2011).

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

93

(i) S -> <NP><INFL><VP|VP1>

SNP INFL VP

VP1

Figure 7. FST for Ibibio sentence

(ii) NP -> <QUANT><N*>|<QUANT><N><PRO>|<QUANT><PRO>

|<ADJ.P><N*>|<N>|<N><PRO>|<N><PRO><AJN>|<N><AJN>

|<PRO>|<DET><N>|<PP><N>

QUANT

N

N

PRO

NP

ADJ.P

AJN

DET
PP

(PP,N)

(NP,QUANT)

(NP,QUANT)

(QUANT,N)

(NP,QUANT)

Figure 8. FST for Ibibio NP

(iii) INFL -> <AGR><TENSE>|<AGR><TENSE><MOD>

|<AGR><TENSE><ASP>|<AGR><TENSE><MOD><ASP>

INFL AGR TENSE

MOD

ASP

(TENSE, MOD)

Figure 9. FST for Ibibio INFL

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

94

 (iv) VP -> <COP.V|V*>|<V*><ADJ.P>|<V*><NP>

|<V*><ADV.P>|<V*><COMP_P>

COMPL_P-> <COMP>S

VP COP.V

V ADJ.P

ADV.P

COMP_P COMP S

NP

Figure 10. FST for Ibibio VP

(v) VP1 -> <V><AGR-S>|<V><NP><AGR-S>

VP1 V AGR-S

NP

(V,NP)

Figure 11. FST for Ibibio VP1

These illustrations are useful for checking the completeness of the proposed PSG and applied in the next section.

6. Implementation

6.1 Productions Grouping

From the above FSMs, it is easy to build the productions rule table in a relational database format, with the
theory of deductive database in mind. The table, which defines the rules-set for sentence parsing, is shown in
Table 3.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

95

Table 3. Productions rule table

REC.
NO.

ROOT PR1 PR2 PR3 PR4 POS1 POS2 POS3 POS4

1 S NP - - - QUANT N* - -

2 S NP - - - QUANT N PRO -

3 S NP - - - QUANT PRO - -

4 S NP - - - ADJ_P N* - -

5 S NP - - - N - - -

6 S NP - - - N PRO - -

7 S NP - - - N PRO AJN -

8 S NP - - - N AJN - -

9 S NP - - - PRO - - -

10 S NP - - - DET N - -

11 S NP - - - PP N - -

12 S NP - - - DET ART - -

13 S NP - - - DET DEM - -

14 S NP - - - PP PREP NP -

15 S - INFL - - AGR TENSE - -

16 S - INFL - - AGR MOD - -

17 S - INFL - - AGR ASP - -

18 S - INFL - - TENSE PRESENT - -

19 S - INFL - - TENSE PAST - -

20 S - INFL - - TENSE FUTURE - -

21 S - INFL - - AGR PERS NUM -

22 S - INFL - - ASP INCEPT - -

23 S - INFL - - ASP HABIT - -

24 S - INFL - - ASP CMPL - -

25 S - INFL - - ASP PROG - -

26 S - - VP - COP_V - - -

27 S - - VP - V - - -

28 S - - VP - V ADJ_P - -

29 S - - VP - V NP - -

30 S - - VP - ADV_P - - -

31 S - - VP - COMP_P - - -

32 S - - VP - COMP_P COMPL S -

33 S - - - - V AGR_S - -

34 S - - - VP1 V NP AGR_S -

35 S - - - VP1 AGR_S PERS NUM TP

36 S - - - VP1 ADJ_P ADJ N -

37 S - - - VP1 ADV_P ADV ADV -

38 S - - - VP1 TP TENSE NEG_P -

39 S - - - VP1 NEG_P NEG VP -

To implement the parsing process, we construct a generic process flow diagram that defines the logical processes
and output extraction. The algorithm can be used to generate the various productions of any input sentence(s)
and is shown in Figure 12; where Eof() means end of file and Locate() indicates the record position. As earlier
acknowledged, a knowledge-base is required in addition to the input sentence. To accomplish this, a part of
speech (PoS) lookup mechanism is required. A simple language dictionary (lexicon or table) of columns
specifying for instance, the morphemes and their respective PoS and search algorithm should suffice. This table

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

96

would enable the system infer correctly, the right productions from the productions rule table. Also, the
productions rule table should be well organized to optimize the search process.

Input sentence

For each morpheme
in input table

Search productions table - POS
columns (POS1-POS4)
Using top-to-bottom approach,
Locate (POS,Record)

Write production rules from
left to right starting from the
ROOT column

Concatenate any column
that comes after located
POS

Fetch next
morpheme

Output

Eof()

NotFound.Locate(POS,Record)

Display entry
error

Found.Locate(POS,Record)

Figure 12. Process flow diagram for sentence parsing

6.2 Eliminating Redundant Nodes (Removing Self Recursion) and Data Structure Design

Let us experiment our design with a sample sentence in Ibibio: ànyé áma� nám án�wán�á ké mmè áwó éniè
ntrè ùbó ̣k ké ús�n̄ ò ̣mmó ̣kèed kèed. A normalized form of the expanded/redundant derivations (Figure 13) for
the sample sentence is given in Figure 14. The expanded structure is obtained by enumerating all possible
productions in Table 3 (including redundant record entries ‘-‘). The redundant nodes as seen in Figure 13 are
grayed-out, while non-redundant nodes are emphasized. In Table 4, an output detailing the set of productions of
each morpheme is presented. We are currently integrating this output into our front-end synthesis modules to
extend its usability (i.e. could be used for teaching/learning purposes). Folding up the grey nodes (i.e. the lower
triangle of Figure 13) produces the normalized form with data links/keys emphasized in Figure 14.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

97

Table 4. Output of algorithm (experiment) on sample sentence

S NP PRO anye
S INFL AGR PERS+NUM a
S INFL TENSE PAST ma
S VP V nam
S VP NP N aNwaNa
S VP COMP_P COMPL ke
S VP COMP_P S NP DET mme
S VP COMP_P S NP N owo
S VP COMP_P S INFL AGR PERS+NUM e
S VP COMP_P S VP V nie
S VP COMP_P S VP NP N ntre ubOk
S VP COMP_P S VP NP PP PREP ke
S VP COMP_P S VP NP PP NP N usVN
S VP COMP_P S VP NP PP NP PRO OmmO
S VP COMP_P S VP NP PP NP N AJN keet keet

Figure 13. Redundant state transitions for a sample sentence

S NP PRO anye
 INFL AGR PERS+NUM a

 TENSE PAST ma
 VP V nam

 NP N aNWaNa
 COMP_P COMPL ke

 S NP DET mme
 NP N owo
 INFL AGR PERS+NUM e
 VP V nie

 NP N ntre ubOk
 PP PREP ke

 NP N usVN
 NP PRO OmmO
 NP N AJN keed keed

Figure 14. A normalized form of experimented sentence

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

98

The implementation algorithm we adopted for the parser produced an output analysis that is consistent with
Table 4, or a treebank (parsed corpus) for training the parser. Treebank parsers do not need to have explicit
grammar. Figure 15 shows a Scheme representation of the normalized parse tree (derivation) of Figure 14. A
linked-list data structure for the sample sentence can also be formed by tracing the link locations (record indexes)
of the derivation tree. This structure is shown in Figure 16. Figure 16 is a data structure solution to our
morpho-syntactic parser and can be effectively implemented in any of the text processing languages (Perl,
Python, LISP, etc.). To allow for a robust design, there is need for an effective interface that would make the
detailed operations transparent to users. Our morpho-syntactic framework is currently being refined for a Hidden
Markov-based Ibibio TTS system. Initial evaluation shows satisfactory performance and more natural sounding
synthesizer. A more detailed evaluation of the synthesizer shall be reported in a subsequent paper.

(S (NP(PRO anye))
(INFL (ARG(PERS+NUM a))

 (TENSE(PAST ma)))
(VP (V nam)

(NP(N aNwaNa))
(COMP_P (COMPL ke)
 (S (NP (DET mme)

 (N owo))
 (INFL(ARG(PERS+NUM e)))
 (VP (V nie)
 (NP (N ntre ubOk)
 (PP (PREP ke)
 (NP (N usVN)
 (PRO OmmO)
 (N(AJN keed keed))))))))))

Figure 15. A Scheme representation of Figure 14

32

5

21

19

27

5

10

5

21

16

5

33

9

8

5

Figure 16. Linked list data structure for sample sentence

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

99

7. Conclusion and Future Research

We have added to the series of efforts aimed at strengthening the linguistic resources of the Ibibio language by
presenting a useful contribution in the area of NLP. With the help of specific formalisms, we have extended the
grammar rules in Essien (1990). These formalisms represent a new, but complex approach which solves some
problems connected with NLP. The algorithm constitute finite state automata (FSA) based on a sentence
grammar, and accepts as input, a sentence; assigns to the sentence, its surface syntactic structure and generates
the syntax tree with the help of a PoS lexicon. The sentence morphology is also taken into consideration during
parsing. This resource will produce a complete toolkit for the language as well as serve as a useful reference for
NLP, speech technology and machine translation research. The current limitation of the paper is that some efforts
are still required to specify most of the linguistic features necessary for implementation. As an outlook, we are
working towards an unsupervised approach to speech processing, where the system requires less linguistic
information. We hope that this approach would enhance the replication/adaptation of the system to other tone
languages, with less modification.

Acknowledgements

We are grateful to the Federal Government of Nigeria (FGN)/Tetiary Education Trust Fund (TETF), for awarding
the corresponding author the 2008 research training intervention grant to visit the Centre for Speech Technology
Research (CSTR), University of Edinburgh, where this research was developed. We also acknowledge the
Science and Technology Education Post Basic (STEP-B) project for also supporting a speech technology
research in the University of Uyo.

References

Akinlabi, A., & Urua, E. (2002). Foot Structure in Ibibio Verb’. Journal of African Languages and Linguistics,
23, 119-160.

Andrew, R. (1997). Syntactic theory and the structure of English: A minimalist approach, Cambridge Textbooks
in Linguistics. Cambridge: University Press.

Appel, A. (1997). Modern Compiler Implementation in C (1st ed.). The Press Syndicate of The University Of
Cambridge.

Brill, E. (1992). A Simple Rule-Based Part of Speech Tagger. In Proceedings of 3rd Conference of Applied
Natural Language Processing, Association of Computational Linguistics (ACL), Stuttgart, 152-155.
http://dx.doi.org/10.3115/1075527.1075553

Bick, E. (2006). A Constraint Grammar-Based Parser for Spanish. In Proceedings of TIL 2006 - 4th Workshop
on Information and Human Language Technology. Brazil: Ribeirão Preto.

Calvo, H., Gambino, O. J., Gelbukh, A., & Inui, K. K. (2011). Dependency Syntax Analysis using Grammar
Induction and a Lexical Categories Precedence System. In Proceedings of the 12th International Conference
on Computational Linguistics and Intelligent Text Processing, Lecture Notes in Computer Science,
6608/2011.

Caprini, I., Fischer, J., & Vrkoc, I. (2010). On the Ambiguity of Functions Represented by Divergent Power
Series. Journal of Applied Numerical Mathematics, 60(12), 1264-1272.
http://dx.doi.org/10.1016/j.apnum.2010.07.008

Chrupala, G. (2006). Simple Data-Driven Context Sensitive Lemmatization. In SEPLN Conference, Spain, paper
5.

Church, K., & Patil, R. (1982). Coping with Syntactic Ambiguity or How to Put the Block in the Box on the
Table. American Journal of Computational Linguistics, 8(3-4), 139-149.

Cutting, D. (1994). Porting a Stochastic Part-of-Speech Tagger to Swedish, Eklund. (ed.) In Proceedings of 9th
Scandinavian Conference on Computational Linguistics, Sweden, 65-70.

Dasgupta, S., & Ng, V. (2007). Unsupervised Morphological Parsing of Bengali. Language Resources and
Evaluation, 48(3-4), 311-338.

De Pauw, G., & De Schryver, G. M. (2008). Improving the Computational Morphological Analysis of a Swahili
Corpus for Lexicographic Purposes. Lexikos 18 (AFRILEX-Reeks/Series), 303-318.

De Pauw, G., & Wagacha, P. W. (2007). Bootstrapping Morphological Analysis of Gikuyu Using Unsupervised
Maximum Entropy Learning. In Proceedings of 8th INTERSPEECH Conference, Antwerp, Belgium 1-4.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

100

De Pauw, G., Wagacha, P. W., & Abade, D. A. (2007). Unsupervised Induction of Dholuo Word Classes using
Maximum Entropy Learning, Getao, K. and E. Omwenga. (eds.) In Proceedings of the 1st International
Conference in Computer Science and ICT, Nairobi, 139-143.

Eineborg, M., & Gambäck, B. (1994). Tagging Experiment using Neural Networks. Eklund. (ed.) In Proceedings
of 9th Scandinavian Conference on Computational Linguistics, Sweden, 71-81.

Ekpenyong, M., Udoinyang, M., & Urua, E. A. (2009). A Robust Language Processor for African Tone Language
Systems. Georgian Electronic Scientific Journals: Computer Science and Telecommunications, 6(23), 3-12.

Ekpenyong, M., Urua, E. A., Udosen, E., & Udoh, E. (2011). Adaptable Phone and Syllable HMM-Based Ibibio
TTS Systems. In Proceedings of 5th Language and Technology Conference (LTC), Poznan, Poland, Zygmunt
V. (ed.), Fundacja Uniwersytetu im. A. Mickiewicza, 355-360.

Elworth, D. (1994). Does Baum-Welch Re-estimation Help Taggers? In Proceedings of 4th Conference of Applied
Natural Language Processing, Association of Computational Linguistics (ACL), Stuttgart, 53-58.
http://dx.doi.org/10.3115/974358.974371

Essien, O. E. (1990). A Grammar of the Ibibio Language. Ibadan Nigeria: University Press Limited.

Essien, O. E. (2010). Vital Aspects of Linguistics. M & J Grand Orbit Ltd, Port Harcourt.

Flajolet, P. (1987). Analytical Models and Ambiguity of Context-free Languages. Theoretical Computer Science,
49, 283-309. http://dx.doi.org/10.1016/0304-3975(87)90011-9

Freidin, R. (1992). Foundations of Generative Syntax. MIT Press, MA., Cambridge.

Ganapathiaraju, M., & Levin, L. (2006). TelMore: Morphological Generator for Telugu Nouns and Verbs. In
Proceedings of 2nd International Conference on Universal Digital Library, Vol Alexandria, Egypt, 1-7.

Garside, R. (1987). The CLAWS Word-Tagging System. Garside, Leech and Sampson (eds.). The Computational
Analysis of English, Longman, London and New York.

Gazdar, G., Klein, E., Pullum, G., & Sag, I. (1985). Generalized Phrase Structure Grammar. Harvard University
Press.

Gibbon, D. (2001). Finite State Prosodic Analysis of African Corpus Resources. In Proceedings of Eurospeech,
Aalborg, Denmark, 83-86.

Kaplan, R., & Bresman, J. (1982). Lexical-Functional Grammar: A Formal System for Grammatical
Representation. Bresman J. (ed.). The Mental Representation of Grammatical Relations, Cambridge
University Press.

Karlsson, F., Voutilainen, A., Heikkila, J., & Anttila, A. (1995). Constraint Grammar: A Language Independent
System for Parsing Unrestricted Text. Mouton De Gruyter. http://dx.doi.org/10.1515/9783110882629

Katamba, F. (1993). Morphology. London: Macmillan Press.

Kumar, A., Dhanalakshmi, V. V., & Rajendran, S. (2010). A Novel Data-Driven Algorithm for Tamil
Morphological Generator. International Journal of Computer Applications, 6(2), 52-56.

Lavalle, J. F., & Langlais, P. (2009). Unsupervised Morphological Analysis by Formal Analogy. In Proceedings
of the 10th Cross-language Evaluation Forum Conference on Multilingual Information Access Evaluation:
Text Retrieval Experiments, 617-624.

Megyesi, B. (2002). Data-Driven Syntactic Analysis Methods and Applications for Swedish. Doctoral
Dissertation, Stockholm University, Sweden.

Megyesi, B., & Carlson, R. (2002). Data-Driven Methods for Building a Swedish Treebank. In Proceedings of
Swedish Treebank Symposium, Sweden, 1-6.

Menon, A. G., Saravanan, S., Loganathan, R., & Soman, K. P. (2009). Amrita Morph Analyzer and Generator for
Tamil: A Rule-Based Approach. In Proceedings of Tamil Internet Conference, Cologne, 239-243.

Merialdo, B. (1994). Tagging English Text with Probabilistic Model. Computational Linguistics, 20(2), 155-171.

Minnen, G., Carroll, J., & Pearce, D. (2000). Robust Applied Morphological Generation. In Proceedings of 1st
International Natural Language Generation Conference, Stroudsburg, PA, USA. Association of
Computational Linguistics, 14, 201-208. http://dx.doi.org/10.3115/1118253.1118281

Naqvi, S., & Tsur, S. (1989). A Logical Language for Data and Knowledge Bases. Rockville: Computer Science
Press.

www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 4; 2012

101

Neto, J. J., Pariente, C. B., & Leonardi, F. (1999). Compiler Construction - A Pedagogical Approach, ICIE.

Ribeiro, R. D., Oliveira, L. C., & Trancoso, I. (2003). Using Morphossyntactic Information in TTS Systems:
Comparing Strategies for European Portuguese. In PROPOR’2003 - 6th Workshop on Computational
Processing of the Portuguese Language. Lecture Notes on Artificial Intelligence (LNAI), pp. 143-150. N. J.
Mamede et al. (Eds.), Springer-Verlag, Heidelberg.

Schmid, H. (1994). Part-of-Speech Tagging with Neural Networks. In Proceedings of COLING-94. Kyoto, Japan
172-176.

Seara, I. C., Pacheco, F. S., Kafta, S. G., Seara, J. R., & Seara, R. (2010). Morphosyntactic Parser for Brazilian
Portuguese: Methodology for Development and Assessment. In PROPOR’ 2010, International Conference
on Computational Processing of the Portuguese Language, Porto Alegre - RS, Brazil.

Shapiro, S. C. (1992). Artificial Intelligence. In Stuart C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence,
second ed., New York: John Wiley.

Simmons, D. (1957). Ibibio Verb Morphology. African Studies, 16(1), 1-19.
http://dx.doi.org/10.1080/00020185708707007

Sipser, S. (2006). Introduction to the Theory of Computation (2nd ed.). Thompson Course Technology, Boston
Mass.

Starosta, S. (1985). The End of Phrase Structure as We Know It. Linguistic Agency-University of Duisburg (Tier)
Series A, p. 147.

Starosta, S., & Nomura, H. (1986). Lexicase Parsing: A Lexicon-Driven Approach to Syntactic Analysis. In
Proceedings of the 11th Conference on Computational Linguistics (COLING), Stroudsburg, 127-132.
http://dx.doi.org/10.3115/991365.991400

Tremblay, J. P., & Sorenson, P. G. (1985). The Theory and Practice of Compiler Writing. Mcgraw-Hill.

Urua, E. E. (1990). Aspects of Ibibio Phonology and Morphology. Ph.D. Dissertation. University of Ibadan,
Ibadan, Nigeria.

Urua, E. A. (2001). The Tone System of Ibibio. In Proceedings of IAPS Workshop on Typology of African
Prosodic Systems, Bielefeld University, Germany.

Voutilainen, A., & Jarvenen, T. (1995). Specifying a Shallow Grammatical Representation for Parsing Purposes.
In Proceedings of the 7th Meeting of the European Association of Computational Linguistics. pp. 210-214.

Wanner, E. (1980). The ATN and the Sausage Machine: Which one is Baloney? Cognition, 8(2), 209-225.
http://dx.doi.org/10.1016/0010-0277(80)90013-X

Whitelock, P. J. (1988). A Feature-Based Categorical Morpho-Syntax for Japanese. In Reyle U. and C. Rohrer
(eds.), Natural Language Parsing and Linguistic Theories. Dordrecht: Reidel.
http://dx.doi.org/10.1007/978-94-009-1337-0_9

