
www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 43

Visualizing and Assessing a Compositional Approach to
Service-Oriented Business Process Design Using Unified Modelling

Language (UML)

Yusuf, Lateef Oladimeji

Department of Computer Science

University of Agriculture, Abeokuta, Ogun State, Nigeria

E-mail: truevisionconsulting@yahoo.com

Olusegun Folorunso

Department of Computer Science

University of Agriculture, Abeokuta, Ogun State, Nigeria

E-mail: folorunsolusegun@yahoo.com

Akinwale, Adio Taofeek.

Department of Computer Science

University of Agriculture Abeokuta, Ogun State, Nigeria

E-mail: atakinwale@yahoo.com

Adejumobi, A. I.

Department of Electrical and Electronics Engineering

University of Agriculture Abeokuta, Ogun State, Nigeria

E-mail: engradejumobi@yahoo.com

Received: March 14, 2011 Accepted: April 5, 2011 doi:10.5539/cis.v4n3p43

Abstract

In the context of Service-Oriented Architecture (SOA), complex systems can be realized through the
visualization of business driven processes. The automation of Service Supported Systems (SSS) is the future
integral part of core SOA which provides preprocessed information and solution suggestions for the Cloud
Computing Users (CCU). CCU requires compact and fast decision supporting displays and user interface in
order to handle the increasing work load. This requires intelligent, intuitive and robust preprocessing system as a
backbone for automation lifecycle management. Complex business management processes often entail complex
environmental decision-making procedures. This process can be greatly enhanced if it is based on an
exploratory-envisioning system such as Information Exploration and Visualization Environment. Current
scientific research has taken advantage of e-science to enhance distributed simulation, analysis and visualization.
Many of these infrastructures use one or more collaborative software paradigms like Grid Computing, High
Level Architecture (HLA) and Service Oriented Architecture (SOA), which together provide an optimal
environment for heterogeneous and distant, real-time collaboration. While significant progress has been made
using these collaborative platforms, often there is no particular software suite that fulfils all requirements for an
entire organization or case study. End-user must cope manually with a collection of tools and its
exporting/importing capabilities to obtain the output needed for a particular purpose. We presents how service
oriented architecture can be utilized in automation services support system using RCD framework as underlying
composition platform. The introduced framework combines rapid analysis development and intelligent process
state visualization for CCU and discusses the challenges met in building reliable cloud computing services for
web services. Unified Modeling Language (UML) is used as a specification technique for the system analysis

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 44

and design process which is the only way to visualize one’s design and check it against requirements before
developers start to code.

Keywords: Cloud computing, Service, Visualization, Service Oriented Architecture, Unified Modeling
Language, Software Architecture

1. Introduction

An application that follows the Service Oriented Architecture paradigm (MacKenzie, 2006) is an assembly of
services that realizes business processes. Business processes are designed by business specialists and typically
involve many services that are composed in a variety of ways. The need to extend a SOA application with new
business features (to follow market trends) arises often in practice. In the technological context of Web Services,
business processes can be implemented as orchestrations of services (Peltz, 2003). Existing tools and formalisms
related to business processes are essentially technologically-driven. They use a design in the large approach and
do not intrinsically provide language constructions and frameworks to support the introduction of new features
into existing processes. The traditional software systems are built upon platforms and Programming Languages
which are tailor-made for a particular purpose, not easily extended to support a wider sharing of resources and
collaborative work. Recently quite numbers of works have been done on visualization, but most of these works
have not actually considered the possibilities of Service-oriented Applications and the advantages these can
bring to the IT business environment. Past Literatures treat SOA application designs with mere functional
demands and requirements, it is believed that how things appear and feel is an important factor to the actual end
users. The traditional approach to information visualization tools uses visualization as the first and last step of a
business process; it fails to take advantage within the intermediate process. Service can be introduced to take
care of the intermediate process. Services as an abstraction of functionality can enable the visualization of a
system that has well-defined processes with relative ease. This can lead to aspirations for achieving greater
complexity with the Service-Oriented Architecture paradigm. SOA is enabled through an interconnected set of
services, each accessible through standard interfaces and messaging, it offers functional abstractions that are
extensible, loosely-coupled and reusable. These characteristics drive the vision of a flexible and distributed
infrastructure that supports on-demand business needs. For Example, Using web services abstract process
workflows enables the orchestration and interactions among several distributed services over the internet using
specifications such as the Business process Execution Language (BPEL).

Cloud computing is an Internet-based computing environment, whereby shared resources tools related to its
information are provided to computers and other devices on demand through services. Cloud computing is a
natural evolution of the widespread adoption of virtualization, Service-Oriented architecture and utility computing.
Details are abstracted from users, who engage the tools for their day today design through the web and the
technology infrastructure "in the cloud”, that supports them (Danielson, 2008). It describes a new supplement,
consumption, and delivery model for IT services based on the Internet, and it typically involves over-the-Internet
provision of dynamically scalable and often virtualized resources (Gartner, 2010 and Grumen, 2008). This
frequently takes the form of web-based tools or applications that users can access and use through a web browser
as if it was a program installed locally on their own computer. Typical cloud computing providers deliver common
business applications relating to online that are accessed from another Web service or software like a Web browser,
while the software and data are stored on servers. Most cloud computing infrastructures consist of services
delivered through common centers and built on servers. Clouds often appear as single points of access for
consumers' computing needs. Commercial tools offerings through the web will generally expected to meet quality
of service (QoS) requirements of customers, and typically include service level agreements (SLAs) (Buyya et al.,
2008).

Recently, there has been a growing tendency to adopt UML (Unified Modeling Language) for different modeling
needs and domains. UML diagramming practices have been applied for specification techniques, designing and
modeling various information systems so as to improve technical accuracy and understanding in requirements
related with this information system (Kanwalvir and Himanshu, 2011). UML offers vocabulary and rules for
communication and focus on conceptual and physical representations of a system. It uses an object oriented
approach to model systems which unifies data and functions (methods) into software components called objects.
Various diagrams are used to show objects and their relationships as well as objects and their responsibilities
(behaviors). It is a standard for object-oriented modeling notations endorsed by the Object Management Group
(OMG, 1999), an industrial consortium on object technologies. UML has become a standard after combining and
taking advantage of a number of Object-Oriented design methodologies (Kobryn, 1999) and is currently posed as
a modeling language instead of a design process. We applied a subset of UML diagrams for modeling RCD
Beam information system.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 45

2. Literature Review

2.1 Software Architecture

To understand how SOA works, it is imperative to understand the concept of software architecture, this will assist
to construct a functional architectural design for a characteristic case study. Software architecture has emerged as
an important sub-discipline of software engineering, particularly in the realm of large system development. While
there is no universal definition of software architecture, there is no shortage of them, either. The following are a
few of the most cited ones:

• Bass, Clements, and Kazman, 1998: The software architecture of a program or computing system is the
structure or structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them. By “externally visible” properties, we
are referring to those assumptions other components can make of a component, such as its provided
services, performance characteristics, fault handling, shared resource usage, and so on (Bass et al.,
1998).

• Garlan and Perry, 1995: The structure of the components of a program/system, their interrelationships,
and principles and guidelines governing their design and evolution over time (Garlan and Perry, 1995).

• Garlan and Shaw, 1993: Beyond the algorithms and data structures of the computation; designing and
specifying the overall system structure emerges as a new kind of problem. Structural issues include gross
organization and global control structure; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical distribution; composition of design
elements; scaling and performance; and selection among design alternatives (Garlan and Shaw, 1993).

• Perry and Wolf, 1992: A set of design elements that have a particular form (Perry and Wolf, 1992).

Earlier Architectural styles that can be found in Shaw and Garlan (1996) and Buschmann et al. (1996) are; Layered,
Pipes and filters, Model-View-Controller, Presentation-Abstraction-Controller, Reflective, Micro Kernel,
Blackboard and Broker architectural framework.

2.2 Unified Modelling Language

UML is a complete language for capturing knowledge (semantics) about a subject and expressing knowledge
(syntax) regarding the subject for the purpose of communication. It applies to modeling and systems. Modeling
involves a focus on understanding a subject (system) and being able to communicate this knowledge. It is the
result of unifying the information systems and technology industry’s best engineering practices (principals,
techniques, methods and tools). It is used for both database and software modeling. UML attempts to combine
the best of the best from: Data Modeling concepts (Entity Relationship Diagrams), Business Modeling (work
flow), Object Modeling and Component Modeling. UML is defined as: “a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software intensive system”. Software architecture is
an area of software engineering directed at developing large, complex applications in a manner that reduces
development costs, increases the quality and facilitates evolution (Shaw and Garlan, 1996). A central and critical
problem software architect’s face is how to efficiently design and analyze software architecture to meet
non-functional requirements. UML offers vocabulary and rules for communication and focus on conceptual and
physical representations of a system. The various structural things in UML are Class, Interface, Collaboration,
Use-case, behavioral things comprise of Interaction, State machine, grouping things comprising of packages and
notes. The artifacts included in standard UML consist of: Use case diagram, Class diagram, Collaboration
diagram, Sequence diagram, State diagram, Activity diagram, Component diagram and Deployment diagram
(OMG, 1999). Unified Modeling Language (UML) is used as a specification technique for the system analysis
and design process involved in the software development life cycle. All the modules of the information system
have been developed using Visual Basic .Net with AutoCAD interface at the backend. The web components are
hosted on Apache web server using Visual Web .Net Developer. Any type of application, running on any type
and combination of hardware, operating system, programming language, and network can be modeled in UML.
It’s Profiles (that is, subsets of UML tailored for specific purposes) help to model Transactional, Real- time, and
Fault-Tolerant systems in a natural way. UML is effective for modeling large, complex software systems. It is
simple to learn for most developers, but provides advanced features for expert analysts, designers and architects.
It can specify systems in an implementation-independent manner. Structural modeling specifies a skeleton that
can be refined and extended with additional structure and behavior. Use case modeling specifies the functional
requirements of system in an object-oriented manner. Existing source code can be analyzed and can be
reverse-engineered into a set of UML diagrams. UML is currently used for applications other than drawing

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 46

designs in the fields of Forward engineering, Reverse engineering, Roundtrip engineering and Model-Driven
Architecture (MDA). A number of tools on the market generate Test and Verification Suites from UML models.
The implementation of UML for our case study (RCD Beam) is well elucidated under methodology.

2.3 Service Oriented Architecture

SOA represents a new paradigm that reflects a leap transition in both computing and software industries (Tsai et al.,
2006). It has emerged after decades of using distributed computing technologies to add a new element to software
stack. One of the main factors that led Microsoft to develop .Net Framework with great support to XML web
services and WCF was to support SOA. IT executives believe that SOA will enable them to alleviate many of
problems related to heterogeneity, interoperability and market ever-changing needs by allowing them to leverage
existing IT investments in a more efficient form to be able to fulfil organizational goals effectively. SOA is a
computing paradigm that utilizes services as fundamental elements for developing systems. The history of SOA
goes back to a concept known as software-as-a-service (SaaS) which first appeared with Application Service
Provider (ASP) software model (Geopfert and Whalen, 2002). Simply, ASP is a “third party entity that deploys,
hosts and manages access to a packaged application and delivers software-based services and solutions to
customers across WAN from a central data centre” (Geopfert and Whalen, 2002), (Krafzig et al., 2004). So, this
ASP is responsible for managing, updating, maintaining, and supporting hosted applications as well as underlying
infrastructures. These hosted applications are delivered over network on subscription or rental basis. Unfortunately,
ASP model has suffered from several inherent limitations such as inability to provide complete customizable
applications that resulted in a new generation of monolithic and tight-coupled architectures. These limitations have
allowed the SOA paradigm to emerge to offer delivery of complex business process in form of network
addressable components known as services that could be accessed and reused everywhere by everyone on
condition that access permissions are granted to requestors. This model enabled end-to-end integration between
different systems or even organizations with the ability to construct new applications and business processes on the
fly to meet new and unexpected business needs. The benefits of SOA includes loose coupling (Loosely-coupled
software means routines modules, programs are called by an application and executed as needed), Location
transparency through the use of URL, More reusability for various consumers on the same application, higher
productivity for project executors by leveraging legacy components wrapping them into a form that might be used
by modern solutions, greater interoperability, higher agility by making systems easier to be built and modified,
better alignment between IT and Business Execs because SOA defines both business requirements and software
functions as services.

Francesco (2009) provides a formal account of the Service Oriented Computing (SOC) paradigm and its related
technologies. His three main contributions are: The introduction of Calculus for Orchestration of Web Services
(COWS), Development of methods and tools to analyse COWS terms, Descriptive power of COWS. His proposed
future work was explored by providing a rigorous methodological foundation for specification and validation of
SOC application using RC Design Business Application as a case study, service interoperability between RC
Design Business and AutoCAD interface was ensured, the interaction of RC Beam Design services obeyed http
protocol. UML4SOA was defined not to COWS but to RCD Beam Business activity. Security protocol was also
ensured using WS-Security embedded in WCF

Maram (2008) explored Web service-oriented architecture for an adaptive e-learning framework known as
WHURLE 2.0. The limited reusability and interoperability provided by the adaptive systems is a limitation to the
work. Though, the thesis attempted to address these limitations at an architectural level. The research community
agree that the next step of integrating Adaptive and Intelligent Web-based Educational Systems (AIES) will be
achieved by defining learning frameworks or platforms that allow the creation of intelligent systems. Those
platforms and frameworks should focus on being domain independent, extensible, interoperable and reusable
technically and semantically.

Olaf (2009) created a decision-centric architecture design method for enterprise application development and
integration projects employing SOA as their architectural style. The work was limited in provision of metamodel
extensions, provision of more comprehensive tool support for the framework steps, integration with other methods
and tools, and a broader use in professional services firms and software product documentation. A usability and
user-experience improvement from user-centric point of view was also lacking.

Folorunso et al., 2010 described how SOA can support RTDBMS. The approach was highly theoretical; no actual
implementation was carried out for a specific real-time database problem. Their approach was adopted to
implement SOA for RCD. Serviceability Limit State for RCD was exposed as a service through RCD table advisor.
A Service-Oriented Architecture for RC design is an information technology approach or strategy for RC in which

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 47

RC design application tool make use of (perhaps more accurately and in a synchronized manner) rely on
data-based services available in a network such as the www. Implementing a Service-Oriented Architecture can
involve developing applications like RC design that use services, making RC design table advisor application tools
available as services so that other RC applications can use those services.

2.4 Cloud Computing

Cloud computing is an Internet-based computing environment, whereby shared resources tools related to
applications and its information are provided to computers and other devices on demand for users. Cloud
computing is a natural evolution of the widespread adoption of virtualization, Service-oriented architecture and
utility computing. Details are abstracted from Designers, who engage the tools for their day today design through
the web and the technology infrastructure "in the cloud”, that supports them (Danielson, 2008). Consumption is
usually billed on a utility (resources consumed, like electricity) or subscription (time-based, like a newspaper)
basis with little or no upfront cost. Other benefits of this approach are low barriers to entry, shared infrastructure
and costs, low management overhead, and immediate access to a broad range of applications. In general, users can
terminate the contract at any time (thereby avoiding return on investment risk and uncertainty), and the services are
often covered by service level agreements (SLAs) with financial penalties (Clint, 2008 and Frank, 2008). Sharing
"perishable and intangible" computing power among multiple tenants can improve utilization rates, as servers are
not unnecessarily left idle (which can reduce costs significantly while increasing the speed of application
development). A side-effect of this approach is that overall computer usage rises dramatically, as customers do not
have to engineer for peak load limits (Carey, 2008). In addition, "increased high-speed bandwidth" makes it
possible to receive the same. The cloud is becoming increasingly associated with Small and Medium Enterprises
(SMEs) as in many cases they cannot justify or afford the large capital expenditure of traditional IT. SMEs also
typically have less existing infrastructure, less bureaucracy, more flexibility, and smaller capital budgets for
purchasing in-house technology. Similarly, SMEs in emerging markets are typically unburdened by established
legacy infrastructures, thus reducing the complexity of deploying cloud solutions. According to Nicholas Carr, the
strategic importance of information technology is diminishing as it becomes standardized and less expensive. He
argues that the cloud computing paradigm shift is similar to the displacement of frozen water trade by electricity
generators early in the 20th century (Nicholas, 2008). Although firms might be able to save on upfront capital
expenditures, they might not save much and might actually pay more for operating expenses. In situations where
the capital expense would be relatively small, or where the organization has more flexibility in their capital budget
than their operating budget, the cloud model might not make great fiscal sense. Other factors having an impact on
the scale of potential cost savings include the efficiency of a company's data center as compared to the cloud
vendor's, the company's existing operating costs, the level of adoption of cloud computing, and the type of
functionality being hosted in the cloud (Paul, 2010 and Balakrishna, 2009). The underlying concept of cloud
computing dates back to the 1960s when John McCarthy opined that "computation may someday be organized as a
public utility", almost all the modern-day characteristics of cloud computing (elastic provision, provided as a
utility, online, illusion of infinite supply), the comparison to the electricity industry and the use of public, private,
government and community forms was thoroughly explored in Douglas Parkhill's 1966 book, The Challenge of the
Computer Utility. The actual term "cloud" borrows from telephony in that telecommunications companies, who
until the 1990s primarily offered dedicated point-to-point data circuits, began offering Virtual Private Network
(VPN) services with comparable quality of service but at a much lower cost. By switching traffic to balance
utilization as they saw fit, they were able to utilize their overall network bandwidth more effectively. The cloud
symbol was used to denote the demarcation point between that which was the responsibility of the provider from
that of the user. Cloud computing extends this boundary to cover servers as well as the network infrastructure
(Mark, 1993). The first scholarly use of the term “cloud computing” was in a 1997 lecture by Ramnath Chellappa.
Amazon played a key role in the development of cloud computing by modernizing their data centers (Jeff, 2006
and Carl, 2010). In 2007, Google, IBM and a number of universities embarked on a large scale cloud computing
research project (Google and IBM, 2008). In early 2008, Eucalyptus became the first open source AWS API
compatible platform for deploying private clouds. By mid-2008, Gartner saw an opportunity for cloud computing
"to shape the relationship among consumers of IT services, those who use IT services and those who sell them"
(Amy, 2008) and observed that "organizations are switching from company-owned hardware and software assets
to per-use service-based models" so that the "projected shift to cloud computing ... will result in dramatic growth in
IT products in some areas and significant reductions in other areas." (Gartner, 2008) In March 2010, Microsoft's
CEO, Steve Ballmer, made his strongest statement of betting the company's future in the cloud by proclaiming,
"For the cloud, we're all in" and further stating, "About 75 percent of our folks are doing entirely cloud based or
entirely cloud inspired; a year from now that will be 90 percent." (Steve, 2010) Microsoft has also offered details
on cloud services for government agencies (Microsoft, 2010).

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 48

The advantages derived from cloud computing is many; they include:

 Designers would be able to access their applications and data from anywhere at any time. They could
access the cloud computing system using any computer linked to the Internet. Data wouldn't be confined
to a hard drive on one user's computer or even a corporation's internal network.

 It could bring hardware costs down. Cloud computing systems would reduce the need for advanced
hardware on the client side. Clients wouldn't need to buy the fastest computer with the most memory,
because the cloud system would take care of those needs for them. Instead, inexpensive computer
terminal could be bought. The terminal could include a monitor, input devices like a keyboard and mouse
and just enough processing power to run the middleware necessary to connect to the cloud system. Users
wouldn't need a large hard drive because all information will be stored on a remote computer.

 Firms that rely on computers have to make sure they have the right software in place to achieve goals.
Cloud computing systems will give these organizations company-wide access to computer applications.
The consulting firms don't have to buy a set of software or software licenses for every employee. Instead,
the company could pay a metered fee to a cloud computing company.

 Servers and digital storage devices take up space. Some companies rent physical space to store servers
and databases because they don't have it available on site. Cloud computing will gives these companies
the option of storing data on someone else's hardware, removing the need for physical space on the front
end.

 Corporations might save money on IT support. Streamlined hardware would, in theory, have fewer
problems than a network of heterogeneous machines and operating systems.

 If the cloud computing system's back end is a grid computing system, then the client could take advantage
of the entire network's processing power. Often, engineers and scientists and researchers work with
calculations so complex that it would take years for individual computers to complete them. On a grid
computing system, the client could send the calculation to the cloud for processing. The cloud system
would tap into the processing power of all available computers on the back end, significantly speeding up
the calculation.

While the benefits of cloud computing seems convincing, there are many potential problems:

There are a few standard hacker tricks that could give cloud computing company major headaches. One of those is
called key logging. A key logging program records keystrokes. If a hacker manages successfully to load a key
logging program on a victim's computer, he or she can study the keystrokes to discover user names and passwords.
Of course, if the user's computer is just a streamlined terminal, it might be impossible to install the program in the
first place. Perhaps the biggest concerns about cloud computing are security and privacy. The idea of handing over
important data to another company worries some people. Corporate executives might hesitate to take advantage of
a cloud computing system because they can't keep their company's information under lock and key. The
counterargument to this position is that the companies offering cloud computing services live and die by their
reputations. It benefits these companies to have reliable security measures in place. Otherwise, the service would
lose all its clients. It's in their interest to employ the most advanced techniques to protect their clients' data. Privacy
is another matter. If a client can log in from any location to access data and applications, it's possible the client's
privacy could be compromised. Cloud computing companies will need to find ways to protect client privacy. One
way is to use authentication techniques such as user names and passwords. Another is to employ an authorization
format; each user can access only the data and applications relevant to his or her job. Some questions regarding
cloud computing are more philosophical. Does the user or company subscribing to the cloud computing service
own the data? Does the cloud computing system, which provides the actual storage space, own it? Is it possible for
a cloud computing company to deny a client access to that client's data? Several companies, law firms and
universities are debating these and other questions about the nature of cloud computing. How will cloud computing
affect other industries? There's a growing concern in the IT industry about how cloud computing could impact the
business of computer maintenance and repair. If companies switch to using streamlined computer systems, they'll
have fewer IT needs. Some industry experts believe that the need for IT jobs will migrate to the back end of the
cloud computing system. Another area of research in the computer science community is autonomic computing.
An autonomic computing system is self-managing, which means the system monitors itself and takes measures to
prevent or repair problems. Currently, autonomic computing is mostly theoretical. But, if autonomic computing
becomes a reality, it could eliminate the need for many IT maintenance jobs. Cloud computing could turn home
computers into simple terminal interfaces. In some ways, this is a step backward. Early computers included
hardwired user terminals. Each terminal had a computer monitor and keyboard, but they only served as an interface

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 49

to the main computer. There was no way to store information locally on a terminal. Cloud computing is the first
and the precise step in making computer ubiquitous.

2.5 Visualization

Information Visualization is a process of transforming information into a visual form enabling the viewer to
observe, browse, make sense, and understand the information. It typically employs computers to process the
information and computer screens to view it using methods of interactive graphics, imaging, and visual design. It
relies on the visual system to perceive and process the information. Information Visualization serves as external
cognition aids that assist people’s memory and thinking and combine illustrative representations of data with
interactive user interfaces which allows people to examine data from many different perspectives (Stuart, 1999).
Guidelines for designing information visualizations are available from writers such as Few (Few, 2006, Few, 2009)
and Tufte (Tufte, 1983, Tufte, 1990). Some of these guidelines overlap with guidelines from graphic design,
including the need to present information clearly, precisely, and without extraneous or distracting clutter. Good
visualizations use graphics to organize information, highlight important information, allow for visual comparisons,
and reveal patterns, trends, and outliers in the data. Visualization guidelines are also derived from principles of
human perception, and urge the designer to be aware of the perceptual properties which can affect the design. Few,
(2006) provide a good overview of these principles. The process of data visualization includes four basic stages
combined in a number of feedback loops; the collection and storage of data, the pre-processing designed to
transform the data into something we can understand, the display hardware and the graphics algorithms that
produce an image on the screen and the human perceptual and cognitive system (the perceiver). Visualization
techniques can be classified based on; The task at hand, the structure of the underlying data set, the dimension of
the display, whether the focus is geometric or symbolic, whether the stimulus is 2D or 3D, or whether the display is
static or dynamic. Visual representations help for various functions such as; to address emotions, to illustrate
relations, to discover trends, patterns, or outliers, to get and keep the attention of recipients, to support
remembrance and recall, to present both overview and detail, to facilitate learning, to coordinate individuals, to
motivate people and to establish a mutual story, to energize people and initiate actions, to present data in various
forms with differing interactions, to provide a qualitative overview of large and complex data sets, summarize data,
and identify regions of interest and appropriate parameters for more focused quantitative analysis, and to harnesses
the perceptual capabilities of the human visual system, etc.

3. Methodology

New things are intimidating and are causing resistance (Jager & Lokman, 1999). Creating service oriented
architecture takes thought, patience, planning, and time. It is a journey, and depending on the size and scope of
components, it may be a journey of years or even a decade. However, an Intelligent Visualization framework using
service-oriented architecture can be developed to alleviate these problems. For the analysis and visualization
system, we propose four main layers which can be easily distributed over the network (Figure 1). The layers
considered are: Data acquisition, Management/Orchestration which will host the mathematical analysis, feature
extraction and decision making, the Visualization layer, and the Communication layer. These Layers will be
interconnected using secure web services which enables the distribution of all layers to different parts of the
automation services support systems. Visualization Layer Service Composed of modules that offer the end
visualization outcome, which depends on performance / quality of detail, required to visualize the same data
provided by the next layer. This layer includes:

• Web Client Services: These are third party software that range from the common Internet browser to more
sophisticated readers of web 2.0 content like mobile phones (e.g., Microsoft™ Virtual Earth, Google™
Maps mobile API).

• Virtual Collaborative Environment Services: Game Engine with real-time, immersive environment for
virtual collaboration

• High Definition Rendering Services: Third party tools for particular visualization needs (e.g., AutoCAD
2010, Visual Nature Studio ™ 3, 3D Nature, 2008).

Management / Orchestration layer services architecture depends on process services that link and sequence
services according to existing and potentially new visualization requirements. These automated services further
delegate specialized functions such as management, security, batch processing and similar features. This layer
includes:

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 50

• Workflow Manager: Responsible for managing sequence of operations/processes to achieve a specific
organizational goal (like rendering a sequence of images), orchestrating the interaction of both human
and machine actors that may intervene in the process.

• RTI Manager: Responsible for managing the Real Time Infrastructure that implements the rules. It
enforces the standards that any engaging simulation should adhere to. Consequently, it will coordinate
data feed/exchange and operations between simulations federates running on the framework’s execution
platform.

• Render Manager: Responsible for scheduling batch or simultaneous rendering tasks.

• Grid Middleware Manager: Responsible for enabling grid technology, thus sharing resources across
multiple machines, while masking this implementation to the other layers which only interact with a
single “virtual” entity.

Data Layer Service Data sources can be composited to feed spatial and non-spatial information requirements that
the orchestration layer needs to fulfil its lifecycle, thus abstracting the need for a particular data source, whether
this source is a AutoCAD Database, a RSS live feed or other machine available sources such as anonymous ftp
repositories.

Communication Service Layer encapsulate information using Web Services protocols (Web Service Description
Language - WSDL, Simple Object Access Protocol -SOAP, and Universal Description Discovery and Integration
- UDDI), data is transferred from all layers through Wrappers/Interfaces that are implemented by standard
contracts on each module.

The analysis, feature extraction and decision making was built using Visual Basic .NET studio which simplifies
system development process. The visualization on the personal computer (PC), mobile device, etc., was
implemented keeping in mind the portability requirements and networks. The visualization framework support
global condition monitoring services and is designed to ease the work of the decreasing number of system experts
on the move. The implementation of the visualization system will require good commitment on behalf of the
automation process personnel and/or expert organizations. The knowledge needed for building the reasoning layer
cannot be done in any other way than in close contact with the automation experts.

We implement UML for RCD beam using yEd Graph Editor Tool (Figure 2a and 2b). The tool is a freeware
downloadable at http://www.yWorks.com. The UML for RCD shows different types of beams for analysis which
inherits their properties from RCD properties interface. There are eight loads possibilities on each beam span
which can be combined in sixty-four ways on a single span. The RCD properties interface and Load Beam
interface worked together as a dialogue boxes, they are always activated simultaneously to get user’s input. The
manoeuvring for drawing the bending moment, shear diagram and detailing of the beam using AutoCAD (2010)
Active X control is done through the RCD Engine class which is revealed in AutoCAD Interface. The RCD Engine
class also activate RCD Table advisor for design and detailing purpose.

All continuous beams implements infinite number of span, the memory of the host machine on which the tool will
be put into operation will be our limitation to the quantity of span that can be implemented. Eight loads conditions
considered are Point load, Distributed linear load, Couple load, equilateral-triangular load, right-angled-triangular
load. The loads are on a particular location along the span or spread entirely over the span. The load beam interface
and RCD properties interface are link into RCD Engine class which contains objects that facilitate the analysis,
design and visualization of our RCD. For example, the getBeamData() object collects inputs from the RCD
properties and Load Beam dialog boxes for further analysis, it also ensure that all data collected have valid inputs.
The showDialog() object for steel table also gets data from RCD table advisor which is exposed as a service. The
designMainReinforcement() object communicates with AutoCAD interface for the visualization of the output
data.

4. Implementation

Encapsulating RCD Beam business process information using Web-Services protocols was achieved with
Window Communication Foundation (WCF) embedded in Microsoft Visual Web Developer Express 2010; WCF
is the integration of Web Service Description Language (WSDL), Simple Object Protocol (SOAP) and Universal
Description Discovery Integration (UDDI). Data is transferred from all layers through Wrappers/Interfaces that are
implemented by standard contracts on each module. As a proof-of-concept in leveraging our architecture in Figure
1 with reality, we mapped and integrated our platform of high definition rendering using the commercial software
AutoCAD with the Visual Basic Express 2010, Visual Web developer 2010 and other tools. A typical flow of
information through this architecture is shown in Figure 3.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 51

Visualization RCD Service Oriented Architecture was implemented using Visual Studio .Net Express 2010
Edition on Window Vista Home Premium 64-bit service pack 2 Operating System with Intel core duo CPU at
2.00 GHz, 4 GB memory. Microsoft Visual Basic Express 2010 was used to implement the core program while
Window Communication Foundation (WCF) found in Microsoft Visual Web Developer Express 2010 was used
to execute the services. The service is thereafter exposed using the http protocol. AutoCAD 2010 was borrowed
and enhanced through interoperability as a visualization environment for the RCD Beam; RCD Beam for
AutoCAD form was created and activated simultaneously with the AutoCAD environment. The form hosts the
File, View, Beam, Option and Help menus. The number of beam span to be designed is entered in the black box
placed after the help menu; its default value is 1 for simply supported beam. When the Beam menu is clicked; it
reveal all the known options for different types of beams encountered by RC designers as earlier planned in
Figure 2 under methodology. When the mouse is hovered on each item on the list, corresponding picture
illustrating what the selected option meant is visualized in the anticipated monitor at the extreme right hand side
as shown in Figure 4. When any of the list options for different types of beams is clicked, two forms are loaded
simultaneously. They are called “Load Beam by Checking Applicable Load Type” form and “RCD Properties”
form. The first form hosts all different types of loads (Figure 5). For example when “point or Knife Edge Load is
checked along with “Linearly Distributed Load Over The Entire Span” are checked, two new forms will be
revealed, waiting for the user input for point/knife edge load in the first form and Linearly distributed load in the
second form (Figure 6). In case the user decides to consider both live and dead load separately, the check box for
“Consider Dead and Live Load” is checked, the form automatically expand waiting for the user’s input for dead
and live load. The value for ultimate load (P(kN) and/or w(kN/m) automatically change as the user enter valid
numeric values in the textbox for Dead and Live load. “RCD Properties” form host all the RCD beam properties
needed to achieve a novel design for reinforced concrete beam (Figure 7).

Validation of basic input is ensured within the code to minimize run time error and other errors. Users are given
choice of values through the combo box and list box; users are also free to input valid values of their choice.
When the completion of the input is successfully achieved, “Draw Bending Moment for Beam” sub menu is
triggered from the option menu. The Bending Moment generated is revealed with text labels at the critical areas
within the AutoCAD environment (Figure 8). The visualization pan and zooming tool in AutoCAD environment
is employed to focus and view details especially the negative moments, positive moments and text details. To
design for the steel reinforcement, “Design Reinforcement for Beam” sub menu is triggered from the option
menu which invokes the steel table dialog box. The Value for the bending moment, Area of steel calculated,
k-value, Lever arm are automatically revealed to guide the user in using his intuition and judgement to pick the
right bar size from the steel table. The dynamic query approach we have adopted empowers users to perform far
more complex searches by using visual search strategies. The enthusiasm RCD analysts have for dynamic
queries emanates from the sense of control they gain. They quickly perceive patterns in data, fly through data by
clicking buttons and rapidly generate new queries based on what they discover through incidental learning.
Interactive visRCD Table visualization is a process made up of a number of interlocking feedback loops that fall
into three broad classes. At the lowest level is the data manipulation loop, through which objects are selected and
moved using the basic skills of eye-hand coordination. At an intermediate level is an exploration and navigation
loop, through which an analyst finds his or her way in a large visual RCD data space. But exploration of RCD
data process can be generalized to more abstract searching operations. The visRCD Steel Table dialog box
(Figure 9) is a web service which implements services for RCD Beam using Windows Communication
Foundation (WCF). WCF is Microsoft’s unified programming model for building service-oriented applications.
It enables developers to build secure, reliable, transacted solutions that interoperate with applications in different
platforms. With WCF, the client will always communicate with the proxy only. The RCD client will not be
allowed to directly communicate with the services, even though the service communicates with the proxy; proxy
forwards the call to the service. Proxy exposes the same functionalities as Service exposed. The limitation of the
implementation is that the service must be available; otherwise the proxy will not be able to access the server,
error that crashes the system will be generated. The error will be cached with message alerting the user that the
service is not available. When ‘Design for Main Bar’ sub menu is activated from option menu, the visRCD Table
Advisor is triggered as a dialog box showing the Design Moment, Area of Steel Calculated, k_value and lever
arm, z value. This guides the user to make the best of choice decision when picking reinforcement from the steel
table. For example, when the button with 943 is clicked, area of Steel provided immediately appears in the text
box as 943 while text box in front of Number of steel label reveal 3 and text box in front of Bar size provided
label divulge 20. The Black Monitor at the extreme right hand side of the visRCD Table Advisor Interface
quickly alerts the user that is on the right path since Area provided is greater than Area calculated. The alert is
revealed in blue colour otherwise, it will be revealed in Red colour. Without leaving the interface and provided

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 52

the service is available (Figure 8), we can check for Minimum and Maximum Area of Steel and deflection by
clicking the appropriate button, and then the revelation is monitored in the black box. Once this is okay, ‘Accept’
button is triggered while the data is transferred back to the main program for further use. Thereafter, the interface
becomes invisible.

The interaction diagrams were presented to usability RCD experts to be initially evaluated and commented upon.
The design decisions were implemented using Microsoft Visual Studio 2010 and AutoCAD 2010. A prototype
was produced to test the theories in practice and to gain information about the RCD users. The implementation
itself took advantage of emerging technologies such as WCF which make it possible to use Service Oriented
Applications through the web services. A total of twenty-five RCD experts were recruited to perform various
tasks on both Structural Analysis and Design (STAAD) Software Product and the prototype RCD applications
and rate their experiences. The outcomes of the user-study were positive, with the majority of the users
(twenty-two out of twenty-five) preferring the prototyped interface to the existing and fully working solution.
This was considered a good result given the qualitative feedback from the users. Some of the findings
emphasized the importance of the holistic experience and look-interact-and-feel over a pure set of technical
features and merits.

5. Conclusion

The major contribution was the integration of a host of techniques to create a novel application that is both usable
and useful in any domain using SOA approach. Cloud Computing as a new innovation to computer business
technology was enhanced for RCD business activities, Civil/Structural engineering Consulting firms do not need
to spend too much to acquire stand alone software that get obsolete in less than a year to do their job, they can pay
for the service on the internet to get the latest innovative software at the lowest cost possible. We simulate the old
ways RC designer works to persuade them into accepting the new technology which eventually reduce cost to the
client. More people will now patronize expert rather than quacks for structural design of their building structures.
Safety of the structures will be ensured. Incessant collapse of buildings will drastically reduce. The visualization
techniques described in this paper really helps the design of a Service Oriented Process when using a
compositional approach. Considering compositions as first class entities, we provide to designer a framework
able to support their design process. Based on these techniques, we identify chronic fragment patterns and sketch
a categorization of these entities. Moreover, when analyzing the composed result, we identify critical points
where process extensions interact violently with initial behavior.

In this paper, we deliberately focus our visualization work on composition definitions. Our goal is to understand"
a system designed by composition, and supports the designer during the design process. In an SOA realized
orchestrations of Web Services, partnerships between services and processes is a key point for performance
measurement. Many experts in government and commerce still consider the greatest barrier to adoption of cloud
as; information security, availability of service and privacy. While these risks exist across the entire cloud
ecosystem, every cloud customer retains responsibility for assessing and understanding the value and sensitivity
of the data they may choose to move to the cloud. As the owners of that information, cloud customers also
remain accountable for decisions regarding the protection of that data wherever it may be stored. The platform
services and hosted applications must be secure and available. The cloud is a dynamic hosting environment in
which technologies and business models continue to evolve. This continuous change is a security challenge that
cloud providers must address through an effective and dynamic security program. Sophisticated malicious
attempts aimed at obtaining identities or blocking access to sensitive business data is a threat that undermines the
willingness of organizations to adopt cloud services. Cloud providers must prove that they have put into place
and constantly evaluate the effectiveness of the technologies, controls, and processes used to mitigate such
disruptions. In addition to these challenges, cloud providers must also address the myriad requirements related to
delivering services globally online including those coming from governments, legal rulings, and industry
standards. In short, cloud service providers need to manage information security risks in a way that engenders
trust with their customers—the government organizations or businesses that do provide such services to end
users, as well as directly with end users. Cloud customers, having decided to transfer some risk to a cloud
provider by consuming a cloud service, should understand what their cloud provider has done and is doing to
protect their information. A successful information security program should also incorporate risk-based
decision-making processes into day-to-day business activities, integrates information security into core IT and
business practices, ensures adequate resource allocation for the projects and programs designed to reduce risk
and dedicates resources to focus on key elements of the information security program.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 53

References

Amy Schurr. (2008). Keep an eye on cloud computing, Amy Schurr, Network World, 2008-07-08, citing the
Gartner report, Cloud Computing Confusion Leads to Opportunity. [Online] Available:
http://www.networkworld.com/newsletters/itlead/2008/070708itlead1.html. Retrieved 2009-09-11.

Balakrishna Narasimhan. (2009). Cloud Computing Savings – Real or Imaginary?. Appirio.com. 2009-04-16.
[Online] Available: http://www.appirio.com/blog/2009/04/cloud-computing-savings-real-or.php. Retrieved
2010-08-22.

Bass, L., Clements, P., and Kazman, R. (1998). Software Architecture in Practice. Reading, MA:
Addison-Wesley Longman

Buschmann F., Jakel C., Meunier R., Rohnert H., Stahl M. (1996). Pattern-Oriented Software Architecture – A
System of Patterns, John Wiley & Sons. [Online] Available: http://www.citeseer.nj.nec.com/context/14159/o

Buyya, Rajkumar; Chee Shin Yeo, Srikumar Venugopal. (2008). Market-Oriented Cloud Computing: Vision,
Hype, and Reality for Delivering IT Services as Computing Utilities. Department of Computer Science and
Software Engineering, University of Melbourne, Australia. pp. 9. [Online] Available:
http://www.gridBus.org/~raj/papers/hpcc2008_keynote_cloudcomputing.pdf. Retrieved 2008-07-31.

Carey, P.W. (2008). Cloud Computing: The Evolution of Software-as-a-Service. [Online] Available:
http://knowledge.wpcarey.asu.edu/article.cfm?articleid=1614. Retrieved 2010-08-22.

Carl Brooks (2010). Amazon’s early efforts at cloud computing? Partly accidental [Online] Available:
http://itknowledgeexchange.techtarget.com/cloud-computing/2010/06/17/amazons-early-efforts-at-cloud-comput
ing-partly-accidental/

Clint Boulton. (2008).
http://www.eweek.com/c/a/Enterprise-Applications/Forresters-Advice-to-CFOs-Embrace-Cloud-Computing-to-
Cut-Costs/

Danielson, Krissi (2008). Distinguishing Cloud Computing from Utility Computing. Ebizq.net. [Online] Available:
http://www.ebizq.net/blogs/saasweek/2008/03/distinguishing_cloud_computing/. Retrieved 2010-08-22.

Few, S. (2006). Information Dashboard Design: The Effective Visual Communication of Data. O'Reilly.

Few, S. (2009). Now You See It: Simple Visualization Techniques for Quantitative Analysis. Analytics Press.

Folorunso Olusegun, Yusuf Lateef O., and Okesola Julius O. (2010): “SOA-RTDBS: A Service Oriented
Architecture (SOA) Supporting Real Time Database System”. Oriental Journal of Computer Science &
Technology; Vol. 3(1), 171-184 (2010)

Francesco Tiezzi. (2009). Specification and Analysis of Service-Oriented Applications. PhD. Thesis in
Computers Science. Departmento di Sistemi E Informatica Universita DegliStudi Di Firenze.

Frank Dzubeck. (2008). Five cloud computing questions. Networkworld.com. [Online] Available:
http://www.networkworld.com/columnists/2008/080508-dzubeck.html. Retrieved 2010-08-22.

Garlan David and Perry Dewayne. (1995). Introduction to the Special Issue on Software Architecture. IEEE
Transactions on Software Engineering 21, 4 (April 1995).

Garlan, D. and Shaw, M. (1993). An Introduction to Software Architecture, in Advances in Software Engineering
and Knowledge Engineering, vol. I. River Edge, NJ: World Scientific Publishing Company, 1993.

Gartner. (2008). Gartner Says Worldwide IT Spending On Pace to Surpass $3.4 Trillion in 2008, Gartner,
2008-08-18. Retrieved 2009-09-11.

Gartner. (2010). Gartner Say's Cloud Computing Will Be As Influential As E-business. Gartner.com. [Online]
Available: http://www.gartner.com/it/page.jsp?id=707508. Retrieved 2010-08-22.

Geopfert, J. And Whalen, M. (2002). An Evolutionary View of Software as a Service. IDC white paper; [Online]
Available: www.idc.com

Google and I.B.M. Join. (2008). in 'Cloud Computing' Research [Online] Available:
http://www.nytimes.com/2007/10/08/technology/08cloud.html?_r=3&ex=1349496000&en=92627f0f65ea0d75&
ei=5090&partner=rssuserland&emc=rss&oref=slogin

Gruman, Galen. (2008). [Online] Available: What cloud computing really means. InfoWorld. [Online] Available:
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031. Retrieved 2009-06-02.

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 54

Jager, A. K. and Lokman A. H. (1999). Impacts of ICT in education. The role of the teacher and teacher training;
Paper presented at the European Conference on Education Reseach, Lathi, Finland 22-25 September 1999.
[Online] Available: http://www.leeds.ac.uk/educol/documents/00001201.htm

Jeff Bezos. (2006). [Online] Available: http://www.businessweek.com/magazine/content/06_46/b4009001.htm

Kanwalvir S.D., and Himanshu A. (2011): Modeling and Designing Land Record Information System Using
Unified Modeling Language. International Journal of Advanced Computer Science and Applications (IJACSA).
Vol. 2, No. 2, February 2011.

Kobryn, C. (1999). UML 2001: a standardization odyssey', Comm. of the ACM, Vol. 42 No. 10, October, pp.
29-37,1999.

Krafzig, Dirk, Banke, Karl, Slama and Durk. (2004). Enterprise SOA, Service Oriented Architecture Best
practices. Prentice Hall, November 2004. ISBN 0-13-146575-9.

MacKenzie, M., Laskey, K., McCabe, F., Brown, P., Metz, R. (2006). Reference Model for Service Oriented
Architecture 1.0. Technical Report wd-soa-rm-cd1, OASIS (February 2006)

Maram Meccawy. (2008). A Service-Oriented Architecture for Adaptive and Collaborative E-Learning Systems.
PhD Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy.

Mark Laubach 1993). July, 1993 meeting report from the IP over ATM working group of the IETF. [Online]
Available: http://mirror.switch.ch/ftp/doc/ietf/ipatm/atm-minutes-93jul.txt. Retrieved 2010-08-22.

Microsoft (2010). Government Cloud Computing: Improved Economy and Services in the Cloud. [Online]
Available: http://www.microsoft.com/industry/government/guides/cloud_computing/default.aspx retrieved
26-12-2010

Nicholas G. Carr. (2008). Nicholas Carr on 'The Big Switch' to cloud computing. Computerworlduk.com. [Online]
Available:
http://www.computerworlduk.com/technology/internet/applications/instant-expert/index.cfm?articleid=1610.
Retrieved 2010-08-22.

Olaf Zimmermann. (2009). An Architectural Decision Modelling Framework for Service-Oriented Architecture
Design. PHD Thesis at the Institut für Architektur von Anwendungssystemen der Universität Stuttgart.

OMG. (1999). UML Revision Task Force,OMG-Unified Modeling Language Specification, [Online] Available:
http://uml.systemhouse.mci.com/ accessed March 10th 2011.

Paul, Fredric. (2010). 1 Midsize Organization Busts 5 Cloud Computing Myths. Bmighty.com. [Online] Available:
http://www.bmighty.com/services/showArticle.jhtml?articleID=211600030. Retrieved 2010-08-22.

Peltz, C. (2003). Web Services Orchestration and Choreography. Computer 36(10)

Perry, Dewayne E. and Wolf, Alexander L. (1992). Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17:4 (October 1992).

Shaw, M., and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall,
1996.

Steve Ballmer (2010). speech at UW: "We're all in" for cloud computing, [Online] Available:
http://seattletimes.nwsource.com/html/microsoftpri0/2011255515_steve_ballmer_speech_at_uw_were_all_in_fo
r_cloud_c.html retrieved 26-12-2010

Stuart , Card. (1999). Information visualization. In Stuart Card, Jock Mackinlay, & Ben Shneiderman (Eds.),
Readings in information visualization: Using vision to think (pp. 1–34). San Francisco, CA: Morgan Kaufmann.

Tsai, W. T., Malek, M., Chen1, Y. and Bastani F. (2006). Perspectives on Service-Oriented Computing and
Service-Oriented System Engineering. Proceedings of the Second IEEE International Symposium on
Service-Oriented System Engineering (SOSE`06)

Tufte Edward. (1983). The Visual Display of Quantitative Information. Graphics Press, Chelshire, CT.

Tufte, E. R. (1990). Envisioning information. Graphics Press Cheshire, Conn. (PO Box 430, Cheshire 06410).

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 55

Figure 1. Architecture diagram with a modular SOA platform built upon aggregation of modules according to the

services offered.

Figure 2a. UML Diagram for RCD Beam Interface showing RCD Table Advisor (continued at Figure 2b)

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 56

Figure 2b. UML Diagram for RCD Beam Interface showing RCD Table Advisor

Figure 3. Framework’s workflow for RCD Beam Business Process Design

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 57

Figure 4. Animated List Control showing different types of beams with corresponding movie on the Right Hand

Side

Figure 5. Link to load beams

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

 ISSN 1913-8989 E-ISSN 1913-8997 58

Figure 6. Knife Edge load and Linearly Distributed load

Figure 7. RCD Beam properties for Design

www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 3; May 2011

Published by Canadian Center of Science and Education 59

Figure 8. Bending Moment Diagram

Figure 9. visRCD Table Advisor as Service

