Validation of Operational WAVEWATCH III Wave Model Against Satellite Altimetry Data Over South West Indian Ocean Off-Coast of Tanzania


  •  Chuki Sangalugeme    
  •  Philbert Luhunga    
  •  Agness Kijazi    
  •  Hamza Kabelwa    

Abstract

The WAVEWATCH III model is a third generation wave model and is commonly used for wave forecasting over different oceans. In this study, the performance of WAVEWATCH III to simulate Ocean wave characteristics (wavelengths, and wave heights (amplitudes)) over the western Indian Ocean in the Coast of East African countries was validated against satellite observation data. Simulated significant wave heights (SWH) and wavelengths over the South West Indian Ocean domain during the month of June 2014 was compared with satellite observation. Statistical measures of model performance that includes bias, Mean Error (ME), Root Mean Square Error (RMSE), Standard Deviation of error (SDE) and Correlation Coefficient (r) are used. It is found that in June 2014, when the WAVEWATCH III model was forced by wind data from the Global Forecasting System (GFS), simulated the wave heights over the Coast of East African countries with biases, Mean Error (ME), Root Mean Square Error (RMSE), Correlation Coefficient (r) and Standard Deviation of error (SDE) in the range of -0.25 to -0.39 m, 0.71 to 3.38 m, 0.84 to 1.84 m, 0.55 to 0.76 and 0.38 to 0.44 respectively. While, when the model was forced by wind data from the European Centre for Medium Range Weather Foresting (ECMWF) simulated wave height with biases, Mean Error (ME), Root Mean Square Error (RMSE), Correlation Coefficient (r) and Standard Deviation of error (SDE) in the range of -0.034 to 0.008 m, 0.0006 to 0.049 m, 0.026 to 0.22 m, 0.76 to 0.89 and 0.31 to 0.41 respectively. This implies that the WAVEWATCH III model performs better in simulating wave characteristics over the South West of Indian Ocean when forced by the boundary condition from ECMWF than from GFS.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9639
  • ISSN(Online): 1916-9647
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19

Learn more

Contact