www.ccsenet.org/apr Applied Physics Research Vol. 3, No. 1; May 2011

Thermodynamic Properties of the Harmonic Oscillator and a Four
Level System

Oladunjoye A. Awoga
Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Nigeria

E-mail: ola.awoga@yahoo.com

Akpan N. Tkot
Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Nigeria
E-mail: ndemikot2005@yahoo.com

Aniesua A. Essiett
Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Nigeria

E-mail: aessiett2@yahoo.com

Louis E. Akpabio
Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Nigeria
E-mail: leabio2002@yahoo.com

Received: January 10,2011  Accepted: January 21,2011  doi:10.5539/apr.v3nlp47

Abstract

The thermodynamics properties of a quantum harmonic oscillator and four level oscillator systems are evaluated.
These results lead to the exact value for the entropy of the system which corresponds to the second law of
thermodynamics. We also show the numerical results for the harmonic and four level oscillators and it is in good
agreement with the one obtained before in the literature.
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1. Introduction

The formation of thermodynamics rests on the entropy, temperature and the three laws of thermodynamics, namely
the first law, second law and third law, relating these state variables (Sethna 2006, Landau and Lifshitz 1980, Kittel
1988). However, the statistical mechanical foundation of thermodynamics relies strongly on the quantum
mechanical properties of matter especially their characteristics at the low temperature regime.

However, the statistical mechanics gives rise to some subtlety when going from a closed description of all degrees
of freedom, including those of large environments to a reduced description of an open system where all bath
degrees of freedom are traced out. In recent times different definitions of specific heat have been discussed and
proposed (Hanggi and Ingold 2006). And in addition the second law of thermodynamics in the quantum region by
calculating the entropy S for a quantum oscillator in an arbitrary heat both at finite temperature have been
examined (Hanggi and Ingold 2008, Ingold et al 2009, Hanggi and Ingold 2005).

The harmonic oscillator has played a significant role in physics and chemistry. The specific heat of crystals has
been calculated for both Einstein and Debye approximation (Feynman 1972, Ingold et al 2009). The Debye theory
predicts that the leading term in the heat capacity of all dielectric solids at sufficiently low temperature is to the
order of T. There are many physical properties that can be calculated in the harmonic models. Some of this
includes thermal conductivity, thermal expansion obtained from the anharmonic terms in the crystal and many
others (Kim et al 2003, Hijar and de Zarate 2010).
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The simplest way of analyzing the harmonic oscillator is to evaluate the partition function of the system. Many
texts (Davydov 1991, Merzbacher 1976, Messiah 1970) have evaluated the partition function of harmonic systems
because once the partition function of a system is known their thermodynamic properties can then be obtained.

In this paper, our objective is to evaluate the thermodynamics of the harmonic oscillator and a four level system by
the method of density matrix and compare our results with those obtained via the partition function.

The organization of the paper is as follows; in section 2 we review the density matrix and section 3 we represent
the dynamics of dissipative quantum system, in sections 4 we evaluate the thermodynamic properties of the
harmonic oscillator. In section 5 we introduce the dynamics of a four level system; while in section 6 we calculate
the thermodynamic properties of a four-level system while section 7 gives a brief discussion.

2. Density Matrix

In quantum mechanics, the state of an isolated system is represented by a state vector y which can be expanded
as

=2 ay, @

where a, = <¢)a ‘l//> and <(ﬂﬂ ‘¢a> = 6aﬁ

The ensemble average of the expectation value of A4 is

|Aw) 2)

where p, represent the probability.

The density operator is defined as

v, )Ry, 3

p=2
and one obtain the ensemble average in terms of the density operator as (Hijar H, 2010)

(A= v |y,

(A)=1{p3) 4

In order to normalize the density operator we write (4) in the form

(ay= 14 ©

- Tr(p)

The canonical ensemble stipulates a density operator of the form

p=e” ©
where b= %{ T and (5) becomes
Tr pH
A= -
) Tr(p)
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Where 2= "¢ #" and p =
In terms of canonical density operator, we write
P=z"e ,Z=Tre ™
The ensemble average for any observable is then given by (Landau and Lifshitz 1980 and Davydov 1991)
()=Tr(af)
Trfe "*
= (®)
Tre

Having established a relation for the canonical density operator, we then obtain the internal energy, entropy and
Helmholtz free energy in terms of this operator as

<E>:%In[Tr(e’ﬂﬁ | ©

S =(-K,In[p))
=~k ,TTr (pIn[ p1) (10)
F =17 (A )- 777 (55) (11)

3. Dynamics of Dissipative Quantum Systems

The wave function |¥) is the state of a system in a pure quantum mechanics which is an element of a Hilbert space
H. However, for a dissipative quantum system, a quantum statistical formulation is employed since dissipative
effects can and do convert pure states into statistical ensembles. As was noted before, the state of the system is
usually represented by a density operator £ whose diagonal elements determine the population of the energy
eigenstate while the off diagonal elements determine the coherence between energy eigenstates which distinguish
coherent superposition states. In a non-dissipative system the time evolution of the density matrix A(f) with
p(ty) = p, is governed by (Merzbacher 1970)

P =1(1)plty)u” (1) 12
where 1(¢) is the time-evaluation operation satisfying our Schrédinger equation

in i) = B (i) (13)
dt

7(0) =1

where {is the identity operator.
The density operator also satisfies the quantum Liouville equation

d o s
i< p(0) = [, p0] (14)

where H is the total Hamiltonian of the system which depends on a set of control field f,
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W

H=H,+Y f,(0H, (19
n=1

with [ , being the internal Hamiltonian and H , s the interaction Hamiltonian for the field f, for 7<n<N.

Now substituting (15) into (14) we get
od . . S IS . R
in=p0 = o] X 1,00, 50k it [p0)] (16)

where ; is the dissipation super-operator.
4. The Harmonic Oscillator

Considering an oscillator with degree of freedom of unity, mass m and frequency @ , we write the Hamiltonian of
the system as

2

p 1 2 2
H="—+—mo'x 1
2m 2 an

Using (7) we write the partition function as

7 =1 )

(18)
yielding the well-known expression
2 :%cosec(@] (19)
with (9) we find the internal energy as
R (20)

Figure (1) shows that there is a linear relationship between the average energy and temperature. This is in
concordance with quantum mechanics with

(n) = m @1

giving
hw,
(E)=""0 4 () (22)

where the leading term is the ground state energy.

The Helmhotz free energy is obtained using (11) as

F- "’7“’%1,1[1 —e] (23)

The free energy increases negatively with temperature which again agrees with the prediction of thermodynamics
as shown in fig. (2)
Similarly, the entropy is calculated from (9)

h ~pho N
S:Tw(lfew—kﬂln[l_e pi :| .

For low temperatures in the region S >> 1, the entropy approaches zero like (Landau and Lifshitz 1980)
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S: ha) e—ﬂh(u

T (25)
The entropy approaches a constant value as temperature increases. This obeys the second law of thermodynamics

which state that for a closed system AS>0 as shown in figure 3. The same as (E. Kozliak and F. L. Lambert,
2008).

We also calculate the specific heat capacity from (20) as

Cv = 6—T<E>
B 2 _pho
=k, ( @ J ¢ (26)
2
k,T (1 —e Fhe )
At low temperatures g >> I, the C, behaves as
h 2
C o=k, | =2 | ¢ 27)
K,T

and this characteristic is not analytic in temperature and corresponds to Einstein’s model for low-temperature
behaviour of the Cy of a solid. For high temperature f <<1 we find (P. Hanggi, 2008)

1 (he Y L
C‘,_kB[I—E{k:;] +o(T )] (28)

and this shows that the limit of free particle is not obtained from the harmonic oscillator by setting « — 0

The C, approaches a constant value i.e. C, ~ k, as temperature increases. This is the Rule of Dulong and Petit in
classical limit.

Equation (26) can also be written as an infinite series as

2
C =k, (:—‘;] > ne e (29)
B

n=1

The behaviour of each state is shown in figure 5 for equation (29).
5. Dynamics of a Four-Level System

The Hamiltonian for a driven for level system with energy level ¢, <, is (Merzbacher 1976)
H(t)=H,+ f,(0H, + [, (t,)H, (30)

where g is the internal Hamiltonian of the system and 7, represent interaction Hamiltonian with independent
real value control fields f;(¢) and f>(?)

00 01

H -a 0010 1)
0100
1 000
0 0 —i

H,=qa, 0 0 10 (32)
0 —-i 0 0
1 0 0 0

with ¢, and ¢, being dipole moments for the transition and the transition frequency
= (t 1t 0)/
= g

Published by Canadian Center of Science and Education 51



www.ccsenet.org/apr Applied Physics Research Vol. 3, No. 1; May 2011

Using (12), (14), (16) and (30) we write our Liouville equation in the form

g, . .
kel = glolEly
e
= |Gl ey + A e + B eg) + ) loleld (337
where
| p(0)) = (P11 (), P, () 2, (D) (34)
0 0 0 1
0 —hw 0 0
H, =
0 0 ho O
0 0 0 0
0 -1 1 0
; -1 0 O 1 a5)
=
Mo 0 0 -1
1 -1 O
0 ~ 1 ~ 1
- £ ] 1 -t
fa = ( 0 0 0 - 1)
Y1 ! L a/
o 000 R
0o -I 1 0
ty =
0 0o -T 0
a1 0 0 -n

with 7, defining the rate of population relaxation from 2)to [1) while 1y, 1s the rate of population from |1)to
‘2> and r defines the dephasing rate.

6. The Thermodynamics of a Four-Level State System
We now consider a system consisting of N independent components with four internal states described by a simple

particle Hamiltonian of the form

£ omg— & & (LI
B= ( g’ E;;Ei & a ] (36)
"e - ;-1 0
Yol & & fp— E-L.-"l

where the system is in thermal equilibrium with a reservoir at temperature T. We construct the density matrix of
the system as

p=e

52 ISSN 1916-9639  E-ISSN 1916-9647



www.ccsenet.org/apr Applied Physics Research Vol. 3, No. 1; May 2011

[ emdEmad 0 0 0
- Hlggtsy]
= 1] gL .-I:I . Q (37)
g g g e
Yo 0 y E—S.i;-ii.‘."
In order to normalize (37) we take its trace as
Tr(p) =1 (38)
which yields
C[e—meo—en Lo P 4 pBEre) e—ﬂ(eG—en] =1 . (38)
Simplifying (38) gives the normalization constant C as
B eﬂeo
4cosh(f <))
and the density matrix (37) becomes
e’ 0 0 0
1 0 e’ 0 0
po— L o (39)
4cosh(Be)| 0 0 e’ 0
0 0 0 o'
The internal energy of the system is
(E)=Tr(pH)
/ (B =8, 1g 5 o ] Y
L o [ Tl v} 8
ga—— FT R . 40
a dro=h e o v I::‘,: I E,:I‘:‘_.;.s. o l ( )
o ] ] (€ — EdeFo}
yielding
(E)=¢, — € tant(B ) (41

The energy increases with temperature and approaches a constant value €, as depicted in figure 6. The
Helmholtz free energy is obtained as

F =¢, —%In[4Cosh(ﬂ &)l (42)

Figure 7 shows a plot of Helmholtz energy with temperature and it shows that F increases negatively and
indefinitely with temperature.

The entropy is calculated using (10) as

S =k, In[4Cosh(B )]—iTltan n(pe,) (43)

The entropy has a minimum value of 0.6952kg. This shows that the four level state systems is always in a state of
disorder. With increasing temperature, the entropy approaches a constant value of 1.381kg. This also obeys the
second law of thermodynamics (AS >0) as shown in figure 8.
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Finally, we obtained the heat capacity as

g e E,--.‘-i.; - . X

I:.- i &y - - -
=kl — | ————— = ke [—=| Sech®(fa.) (4]
bo=tks YT/ (1 4+ e—iFa ]t s “epTF FeRT e )

The behaviour of equation (44) is shown in figure 9 for Cy and it increases between 0 <7 <1 and decreases
between 1< 7T <oo.

Equation (44) can also written as an infinite series as,

0

2
Cv=kﬂ(k€1TJ Z[(znn)e*(““)/’e‘—2ne"‘"f’€1] , (45)

B n=0

and the behavior is depicted in figure 10 .
7. Conclusion

We have evaluated the thermodynamics properties of a quantum harmonic oscillator and a four level system via
density matrix method. The resulting specific heat capacity approaches the classical (Pettit-Dulong law) result for
high temperatures and goes to zero for vanishing temperature. The entropies of both systems also obey the second
law of thermodynamics as well as the third law of thermodynamics. The Helmholtz free energies of the systems
increase negatively with temperature which is the prediction of thermodynamics. Finally, we obtain the numerical
results for the harmonic and four level system and they conform to the known results using the partition function
methods.
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Figure 1. Internal Energy «E> with Temperature T for the Harmonic Oscillator

Therelationship gives a linear relationship ag predicted by Quantum mechanics.

F/hw,

Figure 2. Free Energy F with Temperature T for the Harmonic Oscillator
Astemperature increases the Free energy increases negatively as expected.
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Figure 3. Entropy S with Temperature T for the Harmonic Oscillator
AsT—0, S—0 obeyingthe third law of thermodynamics. As T increases, S
also increases in agreement with the second law of thermodynamics
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Figure 4. Heat Capacity C, with Temperature T for the Harmonic Oscilltor

Astemperarure increases, the heat capacity approaches a constant value kg. It reduces to

the classical rule of Dulong and Petit at high temp eratures
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Figure 5. Heat Capacity C, with Temperature T for different values of n for the Harmonic
Oscillator. As the value of n increases the peak of the C, shifts forward, showing that the
heat capacity increase as n increases
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Figure 6. Internal Energy «E> with Temperature T for the Four Level System.
The internal energy increases with temp erature. It has maximum value of €,
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Figure 7. Free Energy F with Temperature T for the Four Level System.
Just like the free energy of the Harmonic Oscillator and in accordance to the
predictions of Thermodynamics, the free energy of the four level system increases

negatively with temperature
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Figure 8. Entropy S with Temperature T for the Four Level System.
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The entropy initially increages from a minimum value at T=0 and then later

approaches a constant value. There ig a minimum entropy greater than

zero even when the temperature of the system is zero. The system still obeys

the second law of thermodynamics since AS=0 as shown
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Figure 9. Heat Capacity C, with Temperature T for the Four Level System
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Figure 10. Heat Capacity C, with Temperature T for the Four Level System for different values of n.
The heat capacity increases with n which means that higher states have higher heat capacities
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