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Abstract 

The thermodynamics properties of a quantum harmonic oscillator and four level oscillator systems are evaluated. 
These results lead to the exact value for the entropy of the system which corresponds to the second law of 
thermodynamics. We also show the numerical results for the harmonic and four level oscillators and it is in good 
agreement with the one obtained before in the literature. 
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1. Introduction  

The formation of thermodynamics rests on the entropy, temperature and the three laws of thermodynamics, namely 
the first law, second law and third law, relating these state variables (Sethna 2006, Landau and Lifshitz 1980, Kittel 
1988). However, the statistical mechanical foundation of thermodynamics relies strongly on the quantum 
mechanical properties of matter especially their characteristics at the low temperature regime.  

However, the statistical mechanics gives rise to some subtlety when going from a closed description of all degrees 
of freedom, including those of large environments to a reduced description of an open system where all bath 
degrees of freedom are traced out. In recent times different definitions of specific heat have been discussed and 
proposed (Hanggi and Ingold 2006). And in addition the second law of thermodynamics in the quantum region by 
calculating the entropy S for a quantum oscillator in an arbitrary heat both at finite temperature have been 
examined (Hanggi and Ingold 2008, Ingold et al 2009, Hanggi and Ingold 2005).  

The harmonic oscillator has played a significant role in physics and chemistry. The specific heat of crystals has 
been calculated for both Einstein and Debye approximation (Feynman 1972, Ingold et al 2009). The Debye theory 
predicts that the leading term in the heat capacity of all dielectric solids at sufficiently low temperature is to the 
order of T3. There are many physical properties that can be calculated in the harmonic models. Some of this 
includes thermal conductivity, thermal expansion obtained from the anharmonic terms in the crystal and many 
others (Kim et al 2003, Hijar and de Zarate 2010).  
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The simplest way of analyzing the harmonic oscillator is to evaluate the partition function of the system. Many 
texts (Davydov 1991, Merzbacher 1976, Messiah 1970) have evaluated the partition function of harmonic systems 
because once the partition function of a system is known their thermodynamic properties can then be obtained.  

In this paper, our objective is to evaluate the thermodynamics of the harmonic oscillator and a four level system by 
the method of density matrix and compare our results with those obtained via the partition function. 

The organization of the paper is as follows; in section 2 we review the density matrix and section 3 we represent 
the dynamics of dissipative quantum system, in sections 4 we evaluate the thermodynamic properties of the 
harmonic oscillator. In section 5 we introduce the dynamics of a four level system; while in section 6 we calculate 
the thermodynamic properties of a four-level system while section 7 gives a brief discussion.  

2. Density Matrix 

In quantum mechanics, the state of an isolated system is represented by a state vector   which can be expanded 
as  

  )1(


 a  

where  a  and 
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The ensemble average of the expectation value of Â  is  
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where ip  represent the probability.  

The density operator is defined as  
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and one obtain the ensemble average in terms of the density operator as (Hijar H, 2010) 
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In order to normalize the density operator we write (4) in the form 
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The canonical ensemble stipulates a density operator of the form 
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In terms of canonical density operator, we write  

HH TreZezP
ˆ1 ,ˆ     

The ensemble average for any observable is then given by (Landau and Lifshitz 1980 and Davydov 1991) 
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Having established a relation for the canonical density operator, we then obtain the internal energy, entropy and 
Helmholtz free energy in terms of this operator as 
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3. Dynamics of Dissipative Quantum Systems 

The wave function   is the state of a system in a pure quantum mechanics which is an element of a Hilbert space 
H. However, for a dissipative quantum system, a quantum statistical formulation is employed since dissipative 
effects can and do convert pure states into statistical ensembles. As was noted before, the state of the system is 
usually represented by a density operator ̂  whose diagonal elements determine the population of the energy 
eigenstate while the off diagonal elements determine the coherence between energy eigenstates which distinguish 
coherent superposition states. In a non-dissipative system the time evolution of the density matrix )(ˆ t  with 

00 )(ˆ  t  is governed by (Merzbacher 1970) 

)12()()()(ˆ)(ˆ 0 tuttut    

where )(ˆ tu  is the time-evaluation operation satisfying our Schrödinger equation  

  )13()(ˆ)(ˆ)(ˆ tutHtu
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d
i   

 ˆ)0(û  

where ̂ is the identity operator.  
The density operator also satisfies the quantum Liouville equation  

   )14()(ˆ,ˆ)(ˆ tHt
dt

d
i    

where H is the total Hamiltonian of the system which depends on a set of control field fn  
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with 
0Ĥ  being the internal Hamiltonian and 

nĤ  is the interaction Hamiltonian for the field fn for NnI  . 

Now substituting (15) into (14) we get  
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where 
0t  is the dissipation super-operator.  

4. The Harmonic Oscillator 

Considering an oscillator with degree of freedom of unity, mass m and frequency , we write the Hamiltonian of 
the system as  
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Using (7) we write the partition function as  
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yielding the well-known expression  
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with (9) we find the internal energy as  
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Figure (1) shows that there is a linear relationship between the average energy and temperature. This is in 
concordance with quantum mechanics with  

 
)21(

1

0






 


kTe

n





  

giving  

 )22(
2

0 n
w

E 
  

where the leading term is the ground state energy.  

The Helmhotz free energy is obtained using (11) as  
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The free energy increases negatively with temperature which again agrees with the prediction of thermodynamics 
as shown in fig. (2) 

Similarly, the entropy is calculated from (9)  
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For low temperatures in the region ,1 the entropy approaches zero like (Landau and Lifshitz 1980) 
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The entropy approaches a constant value as temperature increases. This obeys the second law of thermodynamics 
which state that for a closed system 0S  as shown in figure 3. The same as (E. Kozliak and F. L. Lambert, 
2008). 

We also calculate the specific heat capacity from (20) as 
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At low temperatures  , the Cv behaves as  
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and this characteristic is not analytic in temperature and corresponds to Einstein’s model for low-temperature 
behaviour of the CV of a solid. For high temperature 1ˆ   we find (P. Hanggi, 2008)  
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and this shows that the limit of free particle is not obtained from the harmonic oscillator by setting 0  

The Cv approaches a constant value i.e. v BC k  as temperature increases. This is the Rule of Dulong and Petit in 
classical limit. 

Equation (26) can also be written as an infinite series as  
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The behaviour of each state is shown in figure 5 for equation (29). 

5. Dynamics of a Four-Level System  

The Hamiltonian for a driven for level system with energy level 
10 tt   is (Merzbacher 1976) 
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where 
0Ĥ  is the internal Hamiltonian of the system and 

2Ĥ  represent interaction Hamiltonian with independent 
real value control fields f1(t) and f2(t) 
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with 
1  and 

2  being dipole moments for the transition and the transition frequency  
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Using (12), (14), (16) and (30) we write our Liouville equation in the form  
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with 21r  defining the rate of population relaxation from 2 to 1  while 21r is the rate of population from 1 to 
2  and defines the dephasing rate.  

6. The Thermodynamics of a Four-Level State System  

We now consider a system consisting of N independent components with four internal states described by a simple 

particle Hamiltonian of the form  

                        (36) 

where the system is in thermal equilibrium with a reservoir at temperature T. We construct the density matrix of 
the system as  

He    



www.ccsenet.org/apr                       Applied Physics Research                    Vol. 3, No. 1; May 2011 

Published by Canadian Center of Science and Education 53

                     (37) 

In order to normalize (37) we take its trace as  
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and the density matrix (37) becomes  
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The internal energy of the system is  
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yielding  
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The energy increases with temperature and approaches a constant value 0  as depicted in figure 6. The 
Helmholtz free energy is obtained as 
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Figure 7 shows a plot of Helmholtz energy with temperature and it shows that F increases negatively and 
indefinitely with temperature.  

The entropy is calculated using (10) as 
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The entropy has a minimum value of 0.6952kB. This shows that the four level state systems is always in a state of 
disorder. With increasing temperature, the entropy approaches a constant value of 1.381kB. This also obeys the 
second law of thermodynamics  0S  as shown in figure 8. 
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Finally, we obtained the heat capacity as  

 

The behaviour of equation (44) is shown in figure 9 for CV and it increases between 10  T  and decreases 
between  T1 . 

Equation (44) can also written as an infinite series as, 
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and the behavior is depicted in figure 10 . 

7. Conclusion  

We have evaluated the thermodynamics properties of a quantum harmonic oscillator and a four level system via 
density matrix method. The resulting specific heat capacity approaches the classical (Pettit-Dulong law) result for 
high temperatures and goes to zero for vanishing temperature. The entropies of both systems also obey the second 
law of thermodynamics as well as the third law of thermodynamics. The Helmholtz free energies of the systems 
increase negatively with temperature which is the prediction of thermodynamics. Finally, we obtain the numerical 
results for the harmonic and four level system and they conform to the known results using the partition function 
methods. 
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