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Abstract 
No report in the literature has directly described this relation. New constants for particles are presented. One relates 
to the Compton wavelength, called here the “mass-wave” constant for all particles. The other relates to the 
deBroglie wavelength, called here the “velocity-wave” constant for a particle. An equation is derived based on 
these two constants encapsulating a fundamental relation between the matter-states, particle and wave, to the 
velocity of light. New approaches to the Uncertainty relations are shown. The basic Schrodinger equation is 
derived from the perspective of a non-dimensional second-order differential equation free of any assumed 
empirical constants. The resulting time-dependent wave equation for a free particle was then expressed in terms 
of the particle velocity and deBroglie wavelength. 
Keywords: deBroglie particle constant, matter waves, new physical constants, new fundamental equation, wave-
state, particle-state  
1. Introduction 
There appears to be no study in the literature that has directly examined this relation. One possible reason is that 
certain constants relevant to the relation have generally gone unrecognized. This paper describes a constant 
dependent on the Compton wavelength (Compton, 1923) and another dependent on the deBroglie wavelength 
(deBroglie, 1925) The analysis relates these constants to the velocity of light, the Uncertainty relation (Heisenberg, 
1927) and the wave equation (Schrodinger, 1926). 
2. Definitions 
m0 = particle rest mass; for the electron = 9.109 · 10–28 g. 
λC = Compton wavelength for a particle of specific rest mass (m0); for the electron it is experimentally measured 
to be = 2.426 · 10–10 cm. 
λB = deBroglie wavelength of a particle of specific rest mass at a known velocity.  
Vp = velocity of particle. 
c = velocity of light = 2.998 · 1010 cm/s. 
h = Planck’s constant = 6.626 · 10–27 g·cm2/s. 
p = particle momentum = [m0 · Vp] g·cm/s. 
3. Results  
3.1 Relation to c 
From the well-known deBroglie equation, λB = h / p, and with p = m · Vp, obtain the relation λB · Vp = h / m. 
Introduce the constant, κ = [m· λC]particle = 2.21 · 10–37 g·cm, which holds for every particle. Then κ · c = h and 
λC · c = h / m, so for any particle this gives [(λB / λC) · Vp]particle  =  c.  
This result for c is independent of particle mass. In the relation λB = λC · c / Vp, when Vp approaches c, then the 
magnitude of the matter-wave property of the particle, λB, decreases, more rapidly than λC and approaches the 
magnitude of the equivalent λC for that particle. When Vp approaches zero the magnitude of λB increases and λB / 
λC approaches infinity, as expected.  
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Introduce the new constant, βp = λB · Vp , called here the deBroglie particle constant, for non-relativistic velocities 
where mass = m0, which varies from particle to particle because it depends on the particle’s rest mass via λB. A 
plot of λB versus Vp gives a rectangular hyperbola that is specific for each particle. Thus, λB · Vp = λC · c = βp = h / 
m0 offers different ways to calculate βp for a particle of rest mass, m0. For the electron, βe = (2.426 · 10–10 
cm) · (2.998 · 1010 cm/s) = 7.27 cm2/s. It gives for the proton, βpr = (1.321 · 10–13 cm) · (2.998 · 1010 cm/s) = 
3.96 · 10–3 cm2/s. The value of βp depends inversely on the value of the particle’s mass because a larger mass 
means a smaller λB, as well as a smaller λC. The values of all three parameters λB, Vp and λC are accessible 
experimentally only for the electron.  
At relativistic velocities m is increasing as Vp increases, so βp now becomes a variable instead of a constant. The 
value of λB depends on {[(c2) – (Vp)2] / (Vp)2}1/2, whereas λC  depends on{[(c2) – (Vp)2] / c2}1/2. Thus, λB must 
decrease faster than λC when Vp is increasing. This satisfies λB = λC · c / Vp. 
3.2 Uncertainty Relation 
The Uncertainty relation (Heisenberg, 1927, Wheeler & Zurck, 1983) for pairs of non-commuting conjugate 
operators, such as position and momentum, is given by (∆x · ∆p)  ≥  h / 4π. It places a lower bound on the 
product of the standard deviations when considering measurements on non-commuting variables — particularly 
for preparation uncertain relations (Ma et al., 2016). The results obtained here offer another perspective on it. 
Rewriting in terms of Vp , λB, λC and βp gives for any particle (Vp < < c)  

Δx · Δp  =  Δx · [ Δ(m0 · Vp)]   ≥   m0 · (λC · c) / 4π   =  m0 ·  (λB · Vp) / 4π  

So, Δx · ΔVp   ≥   (βp / 4π) cm2/s and then dividing by βp yields the product of the dimensionless percentage 
errors, (Δx / λB) · (ΔVp / Vp)  ≥ 1 / 4π. 
For kinetic energy and time (assuming Δt is seen as the time it takes for an observable to change by one standard 
deviation)  

Δt · ΔEkin  =  Δt · (m0 / 2) · Δ[(Vp)2]  ≥   m0 · (λC · c) / 4π   =   m0 · (λB · Vp) / 4π 

then Δt · Δ[(Vp)2]   ≥   (βp / 2π) cm2/s for any particle. For the lower bound (lb) case this leads to the relation 
[Δx / Δt] · [ΔVp / Δ(Vp)2]lb  =  1 / 2. 
One other relevant pair of operators does not commute. It requires different units than h. The relation is then 
Δx · ΔEkin = cm·g·cm2/s2, which leads to 

Δx · Δ[(Vp)2]   ≥   [(βp / 2π) · < Vp >]    ≥    (βp / 2π) · Vp   cm3/s2 

Dividing by βp yields the product of the dimensionless percentage errors given by the relation  
(Δx / λB) · {Δ[(Vp)2] / (Vp)2}  ≥  1 / 2π. 
All these Uncertainty relations are expressible in terms of the deBroglie particle constant introduced here, which 
is specific to each particle and therefore governs the magnitude of the Uncertainty for that particle.  
3.3 Wave Equation 
The deBoglie idea of a matter-wave that characterized a moving particle was established experimentally by 
electron diffraction on crystals (Davisson & Germer, 1928) shortly after the serendipitous creation of the particle 
wave equation (Schrodinger, 1926). Given the concept of matter-waves, it seems reasonable to seek a differential 
equation (D.E.) that describes the relation between the relevant variables governing the behavior of the matter-
wave for a particle in motion, without assuming any empirical constants. This suggests a non-dimensional D.E. 
that employs the fractional change form, Δf = dy / y, the % change in the variable y. Define: 
dy / dt = velocity of y with respect to t. 
d2y / dt2 = acceleration of y with respect to t. 
dy / dx = slope of the y versus x plot. 
(d / dx) (dy / dx) = gradient with respect to x of the slope = d2y / dx2 = curvature. 
Illustrations: 
— Hooke’s law for the position of the moving mass (xm) on the end of the coiled spring is defined by the relation, 
the % change acceleration = the % change distance, so Δf (d2xm / dt2) = Δf (xm). 
— Maxwell’s second-order D.E. for E is defined by the % change curvature = the % change acceleration, so     
Δf (∂2E / ∂x2) = Δf (∂2E / ∂t2).  
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Such non-dimensional D.E. equations are free of assumptions about empirical constants. These emerge directly 
from the integration and consideration of the units. 
Assume the matter-wave for a free particle (moving with fixed velocity, Vp << c), in one dimension and not 
influenced by any external field) exhibits a periodic behavior. Assume a function A(x,t) describes this behavior, 
where A is related to the amplitude of the particle’s matter-wave. For A(x,t), the second-order partial D.E. follows 
from assuming that the behavior of A(x,t) is governed by the following simple relation 
 % change curvature of A = % change velocity of A giving 

 Δf (∂2A / ∂x2)  =  Δf (∂A / ∂t) 

This defines the basic physical relationship for the variables governing the particle’s matter-wave behavior under 
the given conditions. Integrating gives  

d2A / dx2  =  C1 · dA / dt 

where C1 has the units of s/cm2. Thus, set C1 = (– i / βp) in terms of the deBroglie particle constant. Separating 
variables gives, A(x,t) = Ψ(x) Φ(t). Then for Φ(t), 

dΦ(t) / Φ(t)  =  (K / C1) · dt  =  – i · βp / (λB)2   

where the separation constant, K, has units of (1 / cm2) giving K = (i / λB)2, and so K / C1 = (i / λB)2 / (– i / βp) = – 
i ·Vp / λB, for fixed velocity. After integrating, 

Φ(t)  =  C2 · exp [t · K / C1]  =  C2 · exp [– i · t · Vp / λB]   

The time-independent part of the equation has a solution,   

Ψ(x)  =  C3 · exp [K1/2 · x]  =  C3 · exp [i · x / λB] 

Then, with C2 · C3 = A,  

A(x,t)  =  Ψ(x) Φ(t)  =  A · exp [(i · x – Vp · t) / λB]  =  A · exp [i · (x – xt) / λB]      

expressed in terms of λB, the deBroglie wavelength of the particle’s matter-wave, and Vp, its velocity, where (Vp · t) 
= xt, the expected “classical” distance traveled. Thus, (x – xt) is the dispersion around this expected result, which 
is a direct consequence of the quantum mechanical nature of the wave function’s prediction for the particle’s 
location. This dispersion becomes a % change when expressed as (x – xt) / λB. 
4. Discussion 
The equation [λB · Vp = λC · c]particle = βp encapsulates a fundamental relation for the two matter-states, particle and 
wave. This result for c has not appeared previously in the literature. The analysis revealed the unique connection 
of c to λB, λC and Vp via the new constants κ and βp. Recognize κ as the “mass-wave” constant for all particles and 
βp as the matter-wave constant for any particular particle. It was essential to employ κ· c = h in order to obtain this 
result for c.  
The one-dimensional Schrodinger equation for the free non-relativistic electron was described in terms of λB and 
Vp. This result reopens the question of what exactly is waving in the wave equation? It suggests A(x,t) could be 
equated to the amplitude of the deBroglie matter-wave characterizing each solution of the wave function. The 
square of the amplitude of a classical wave is a measure of its relative intensity, which correlates with a relative 
probability. For relativistic velocities, λB · Vp = λC · c = βp = h / m, a variable. 
Looking at h in terms of h = κ · c = m · λC · c = m · λB · Vp = m · βp reveals a different perspective on the Uncertainty 
principle, depending on the formulation of the specific variables involved. The role played by h in the Uncertainty 
principle is also reconsidered in terms of the appropriate parameters, λB, λC and Vp as well as βp and κ. This gave 
new expressions for the standard forms of the Uncertainty relation that were particle specific. Thus, βp = h / m = 
hp might also be interpreted as the “rationalized” Planck constant for any particle at velocity Vp.  
The equation [λB · Vp = λC · c]particle shows the close relationship between the wave-like behavior of a particle, λB, 
and the electromagnetic wave equivalent of that particle’s rest mass, λC. As Vp approaches c, these wavelengths 
approach ever more closely. This suggests that the wave character of a particle might approximate the wave 
character of an electromagnetic wave in this case. 
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5. Conclusions 
The equation [λB · Vp = λC · c]particle encapsulates a fundamental relation for the two matter-states, particle and wave. 
This result for c has not appeared previously in the literature. It revealed the unique connection of c to λB, λC and 
Vp via the new constants κ and βp. The utility of calculating βp for the particle from λC · c = λB · Vp was shown. 
Looking at h in terms of h = κ · c = m · λC · c = m ·· λB · Vp = m · βp reveals a different perspective on the Uncertainty 
principle, depending on the formulation of the specific relations involved. The time-dependent wave equation for 
a free particle was derived in terms of λB and Vp.  
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