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Abstract 

The concatenation of one cycle in the operation of a reversible heat engine with that process in which the 
engine’s work output is irreversibly degraded into heat at the temperature of the cold reservoir, transforms the 
effects of the former into a couple of irreversible heat transfers. One of these heat transfers is found to be 
credited, via thermodynamic-sanctioned procedures, with two different entropy changes. A logical analysis 
centered on the principle of contradiction rejects one of these entropy changes as well as the thermodynamic 
notion leading to it. The rejected notion, the one assigning a zero entropy change to the heat-to-work 
transformation, brings to light a counterexample to the second law of thermodynamics in the form of an 
isothermal and reversible process with a different from zero total entropy change.  

Keywords: law of increasing entropy, constant entropy reversibility criterion, counterexample, heat to work 
transformation, entropy, negentropy 

1. Introduction 

No one has expressed the true reach of the law of increasing entropy in simpler terms than Roger Caillois: 
“Clausius and Darwin cannot both be right” (Prigogine, 1980). Even now, as the following quotes attest, the need 
is felt for a new theoretical construction capable of doing what Prigogine’s Dissipative Structures paradigm was 
supposed to have accomplished: solving the paradox represented by the second law’s future of decay, and 
nature’s incessant success in turning chaos into order. Thus while Farmer states: “I’d like to believe (life) is 
described by some counterpart of the second law of thermodynamics—some law that would describe the 
tendency of matter to organize itself, and that would predict the general properties of organization we’d expect to 
see in the universe” (Waldrop, 1992); Kauffman, on his part, inquires “Could there possibly be a fourth law of 
thermodynamics for open thermodynamic systems, some law that governs biospheres anywhere in the cosmos or 
the cosmos itself” (Kauffman, 2004)? 

As will here be shown, no fourth law is needed to bring self-organizing phenomena into the realm of 
thermodynamics, but a simple elimination of a theoretical flaw hidden among the notions sustaining the edifice 
of what is known as the law of increasing entropy. The construction arising from this correction manages to 
bring together, in a simple equation, the opposites at play in natural processes: the entropy increasing effects 
associated to the irreversible degradation of work into heat and the entropy decreasing effects of work creation 
via the upgrading of heat into work.  

2. Background 

2.1 Reversible Cyclical Processes 

According to Clausius “…in a Simple Cyclical Process two variations in respect to heat take place, viz. that a 
certain quantity of heat is converted into work (or generated out of work), and another quantity of heat passes 
from a hotter into a colder body (or vice versa)...The relation between these two transformations is...that which is 
to be expressed by the Second Main Principle” (Clausius, 1879a).  

For the case of a reversible heat engine absorbing a cyclical amount heat hQ  from a hot reservoir of 
temperature hT , these two transformations can be represented via the following self evident notation: 

revh WTQ ])([  , revcchc TQTQ )]()([  . Here Q  stands for that portion of hQ  that ends up as work (W ) in an 
appropriate mechanical reservoir, and cQ  for the remaining portion of hQ  which is reversibly transferred to a 
cold reservoir of temperature cT , with ch TT  . From the previous considerations it is understood that  
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ch QQQ   (1)

And also that 

                                      WQ   (2)

The amount of work produced by this reversible engine per cycle of operation is quantified by the following 
equation 

                                      
hchh TTTQW /)(   (3)

Here the term 
hch TTT /)(   represents the efficiency of the reversible engine. It quantifies the fraction of every 

unit of heat coming out of the hot reservoir that ends up transformed into the superior form of energy we call 
work. 

It was in terms of these two transformations that Clausius originally expressed what was to be known as the 
second law of thermodynamics “...the algebraic sum of all the transformations which occur in a cyclical process 
must always be positive or in the limit equal to zero...” (Clausius, 1879b). Later on this statement was 
generalized in the following terms “...The theorem which... was enunciated in reference to circular processes 
only...has thus assumed a more general form, and may be enunciated thus:- The algebraic sum of all the 
transformations occurring in any alteration of condition whatever can only be positive, or as an extreme case, 
equal to nothing...” (Clausius, 1862). For the reversible heat engine being considered and in terms of the 
previously introduced notation, these statements find the following mathematical representation  

                                 0)]()([])([  revcchcrevh TQTQSWTQS (4)

Equation (4) embodies the zero total entropy principle i.e. the form taken by the second law of thermodynamics 
when applied to reversible processes.  

Serves to note here that at difference with current thermodynamics which describes the total or universe entropy 
change of a given process in terms of the combined entropy changes of the bodies involved in it, Clausius 
approach does it in terms of what might be called ‘elementary processes’ or ‘transformations’ such as the 
transformation of heat into work, the transformation of heat between two bodies, the transformation of reactants 
into products in a chemical reaction, the degradation of heat into work, etc. The entropy change of a given 
transformation is this way the resultant of the entropy contributions of each and every one of the bodies in it 
participating. If a body takes part in a given process then its contribution, either individual or as part of a 
collective, can be identified either as a component of a transformation or as a transformation itself. The 
summation of the entropy changes of all the transformations subsumed by a given process determines, on its part, 
its total entropy change.  

The identification of the individual entropy changes for the two transformations appearing in Equation (4) can be 
accomplished via the thermodynamic notion that associates a zero entropy change to the production of work out 
of heat. Thus, when performing the entropy balance for a reversible heat engine Pitzer and Brewer tells us that in 
it “…the work term does not appear...since it involves no entropy...” (Pitzer & Brewer, 1961a). The justification 
for this position appears to be linked to the fact that the effect of revh WTQ ])([  , as well as that of its opposite 

revhTQW )]([   finds manifestation in the change of condition of a purely-mechanical body (be it the rising or 

lowering of weights, the elongation/compression of a spring, or any other equivalent mechanism), restricted by 
its very nature to reversible ergo isentropic processes. This rationale takes the form 0.  wtS  in the entropy 

balances performed by Bent (1965a) for a number of processes, and is also found in the following quote by 
Barrow “…we are at liberty, you should recognize, to ascribe any features to this new entropy function that we 
like, the requirement being that we construct a function that is self consistent and allows us to form a useful 
expression for the second law. In this way we further specify that, for all processes, 0resmechdS ” (Barrow, 1973). 

Here 0resmechdS  refers to the entropy change for the mechanical reservoir. The previous statements can all be 

found subsumed one way or another in the thermodynamic definition of a mechanical reservoir (or reversible 
work source) as “A system enclosed by adiabatic impermeable walls in which all processes of interest are 
quasistatic…” (Tschoegl, 2000). An equivalent definition can be found in Callen (2007). 

According to the previous considerations, the entropy change for the heat-to-work transformation taking place in 
a reversible heat engine can be written as 



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 3; 2014 

102 
 

                                      0])([  revh WTQS  (5)

The combination of Equations (4) and (5) leads, in turn, to 

                                      0)]()([  revcchc TQTQS  (6)

Note that these entropy changes conform to the zero total entropy change demanded by the second law for 
reversible processes. The fact that each of these transformations takes into consideration the entropy contribution 
of all the bodies in it participating makes each of them a universe in itself (and a sub-universe of the heat engine), 
and their respective entropy changes total entropy changes. 

2.2 The Irreversible Transfer of Heat 

The entropy change for the direct, irreversible transfer of an amount of heat Q  from a hot reservoir of 
temperature hT  to a cold reservoir of temperature cT  is known to be (Bevan-Ott & Boerio-Goates, 2000) 

                                      

ch
irrch T

Q

T

Q
TQTQS  )]()([  

(7)

In correspondence with the fact that this irreversible process takes place with the sole involvement of the said 
reservoirs, we find its entropy change determined by the summation of the entropy changes of these two bodies. 
Thus, hTQ /  and cTQ /  respectively represent the entropy changes of the hot and cold reservoirs due to the 
release, in the former, and the absorption, in the latter, of the amount of heat Q . 

The validity of this result, it needs to be pointed out, stems from the validity of the notions on which it stands: 
the first law of thermodynamics ( WQdU   ) and the definition of the entropy, TQdS rev / . The fact that a 
heat bath or heat reservoir is a constant temperature body capable of exchanging heat but not work ( 0W ) 
allows any of its changes to be described by dQdU  . This equation makes evident the fact that any heat 
exchanged by a heat reservoir is equal to the change of a point function. Being this so “the change of state of the 
heat bath is thus entirely determined by the heat transfer dQ and dS  is therefore the same whether this 
transfer is reversible or not.” (Denbigh, 1968). Consequently, the entropy change of a heat reservoir of 
temperature T  becomes simply TQS / . It is this equation the one producing the entropy changes of 
Equation (7).  

It should also be noted from Equation (7) that with the exception of the zero entropy change arising at that limit 
case of reservoirs of the same temperature, in any other situation in which as assumed ch TT  , the entropy 
change will be positive and as such in agreement with the law of increasing entropy, the form adopted by the 
second law of thermodynamics in the case of irreversible processes such as the transfer of heat here being 
considered. 

The re-expression of the right hand side of Equation (7) as chch TTTTQ /)/)((   permits, with the aid of 
Equation (3), the identification of )/)(( hch TTTQ   with the work Q  could have produced had it been fed to a 
reversible engine working between the said two reservoirs. On this perspective it can be properly called the work 
lost by the irreversible transit of Q . Its representation as )]([ QWlost  permits giving Equation (7) the following 
form 

                                     
clostirrch TQWTQTQS /)]([)]()([   (8)

The term )]([ QWlost  was chosen to distinguish Equation (8) from that other equation of similar form found in 
second law thermodynamics which quantifies the entropic effect of the degradation of actual work into heat “If 
an amount of work W  is degraded to heat at temperature T , the increase in entropy is TWSd irr / ” 
(Pitzer & Brewer, 1961b). 

The work degrading process to which the previous quote makes reference and the entropy change by it produced, 
for the purpose of the discussions that follow, will be represented as follows 

                                      
cirrc TWTQWS /)]([   (9)

2.3 Work Production in Cyclical Processes 

As known, the cyclical evolution of a reversible heat engine is produced by the concatenation of a reversible and 
isothermal expansion at the temperature of the hot reservoir; an adiabatic and reversible expansion taking the 
working substance, which will heretofore be taken as an ideal gas, from the temperature of the hot reservoir to 
that of the cold reservoir; an isothermal and reversible compression at the temperature of the cold reservoir, and 
finally, closing the cycle, an adiabatic and reversible compression taking the gas back to its initial condition.  
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On reason of the fact that in cyclical processes the heat-to-work and work-to-heat transformations take place 
along the isothermal and reversible processes is that a closer look to these processes will be taken in what 
follows. 

Besides the ideal gas appropriately contained in a cylinder fitted with a frictionless and weightless piston, an 
isothermal and reversible process demands the concourse of a heat reservoir of the same temperature of the gas, 
and also of a mechanical reservoir to store/supply the work produced/required along the expansion/compression. 
In the case of an isothermal and reversible expansion (IRE), the ideal gas manages to quantitatively transform 
into work all of the heat absorbed from the reservoir. Now, before any amount of heat Q  can be transformed 
into work, it has first to flow from the reservoir to the gas. This allows us to recognize that two concomitant 
processes are taking place along the expansion: The transfer of heat between two bodies of the same temperature, 
and the actual transformation of heat into work by the expanding gas. According to the notation above 
introduced, the total entropy change for this process can be written as follows 

                             0])([)]()([][  revrev WTQSTQTQSIRES (10)

That Equation (10) is equal to zero finds explanation in the fact that the entropy changes of the two 
transformations in it appearing are also zero: that of the heat transfer on reason of it taking place between two 
bodies of the same temperature; and that of the heat-to-work transformation on reason of Equation (5). This 
equation is the mathematical representation of the second law of thermodynamics in the form it applies to 
isothermal and reversible expansions. The fact that 0])([  revWTQS  is incompatible with this principle 
will allow the construction of a counterexample to it.  

Serves to note that in an (IRE) taken by itself, i.e. not as part of a heat engine, full conversion of heat into work 
is achieved at the price of leaving the gas in an expanded condition. In order to have a second work-producing 
round the work produced will have to be expended in full in taking the gas back to its compressed original 
position, so no work will remain at the end of this peculiar cycle. The continuous transformation of heat into 
work needs to make use of a heat engine and this, in turn demands a cyclical process such as the one described at 
the beginning of this section. Any of these engines, even if reversible, and excluding reservoirs of infinite or 
absolute zero temperatures, will never be able to achieve the full conversion of heat into work.  

2.4 The Principle of Contradiction 

Aristotle’s principle of contradiction will be the criterion used in this work to identify which of two contradictory 
statements is at fault. For the purpose of this task this principle will be expressed as follows: X cannot be both X 
and not X at the same time and in the same respect. Violation of this principle implies a contradiction. The 
contradiction consists in that even if being X excludes the possibility of not being X at the same time and in the 
same respect, both of these positions are taken as true when in reality “they divide the true and the false between 
them” i.e., “one member of the pair must be true and the other false” (Horn, 2010). Any set of statements 
involving contradictions becomes, this way, logically inconsistent.  

3. The Contradictions of Second Law Thermodynamics 

3.1 From One Cycle of a Reversible Heat Engine to a Couple of Irreversible Heat Transfers 

The effects of one cycle in the operation of the reversible heat engine discussed in Section 2.1 have been 
depicted in Figure 1(a). There, the (implicit) engine is shown transferring the amount of heat cQ  from the hot 
to the cold reservoir, as well as transforming into work (W ) the amount of heat Q  of temperature hT . As 
before stated, ch QQQ  . If this cycle is now concatenated with that process shown in 1(b) in which W is 
irreversibly degraded, say via a frictional mechanism, into an equivalent amount of heat ending up in the cold 
reservoir, we will see the original effects of the reversible engine reduced to the two irreversible heat transfers 
shown in 1(c). In order to understand the transit from 1(a)+1(b) to 1(c) let us consider the following two facts.  

1) That the concatenation of the heat-to-work transformation shown in 1(a), with the work-to-heat transformation 
shown in 1(b), produces as its sole effect the irreversible transfer of Q  from the hot to the cold reservoir shown 
in 1(c) as irrQ : Having left the hot reservoir of temperature hT  to be transformed into W in 1(a), Q  
reappears in 1(b) entering the cold reservoir upon the transformation of W back into heat taking place there. 
Therefore 

                            irrchirrcrevh TQTQTQWWTQ )]()([)]([])([  (11)

As should be noted from Figure 1, the other transformation taking place in 1(a) revcchc TQTQ )]()([   
reappears in 1(c) as irrcQ , , shorthand for  irrcchc TQTQ )]()([  . 

2) That while the availability of W  in 1(a) is the reason behind the reversible condition of the two 
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transformations there taking place—the simple feeding of W  to the inverse cycle has the effect of restoring the 
initial state without changes being left elsewhere; It is the unavailability of work in 1(c) what explains the 
irreversible condition of the two heat transfers there depicted. The reason is simple. The transfer back in 1(c) of 
Q  or cQ , or both, from the cold to the hot reservoir demands the expenditure of work. The fact that none is 
here available means that such a reversion can only take place at the price of leaving a permanent change in that 
body called to supply the required amount of work. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Out of the amount of heat hQ  released by the hot reservoir of temperature hT , the reversible heat 
engine implicit in (a) manages to transfer the portion cQ  to the cold reservoir of temperature cT , and to 

transform the difference ch QQQ   into the equivalent amount of work W . The further degradation of W
into heat at the temperature of the cold reservoir shown in (b) has the effect of reducing the original engine 
effects to those of the two irreversible heat transfers shown in (c). Here revcQ ,  irrcQ ,  and irrQ  stand, 

respectively, for revcchc TQTQ )]()([  , irrcchc TQTQ )]()([  , and irrch TQTQ )]()([   

 

3.2 The First Entropy Change for irrch TQTQ )]()([    

The irreversible nature of both of the heat transfers shown in 1(c) makes them identical in nature to that 
described in Section 2.2. If so, their respective entropy changes can, at the light of that expressed by Equation (7), 
be written as follows 

                                   

ch
irrch T

Q

T

Q
TQTQS  )]()([  (12)

                                 

c

c

h

c
irrcchc T

Q

T

Q
TQTQS  ]()([  (13)

The addition of Equations (12) and (13) leads, with the concourse of Equation (3), the facts that ch QQQ  , 
and WQ  , as well as some algebraic rearrangements, to the following equivalent expressions for the total 
entropy change of process 1(c): 

             

ccc

hchh

c

h

h

h

c

c

h

c

ch
irr T

W

T

Q

T

TTTQ

T

Q

T

Q

T

Q

T

Q

T

Q

T

Q
cS 




]/)[(
)()()](1[  (14)

3.3 The Second Entropy Change for irrch TQTQ )]()([   

The entropy change for the irreversible transfer of Q  shown in 1(c) can, in attention to Equation (11), be 
written as follows 

                      irrcrevhirrch TQWSWTQSTQTQS )]([])([)]()([   (15)

Further substitution in the previous expression of Equations (5) and (9) produces 

                                      cirrch TWTQTQS /0)]()([   (16)

The combination of Equation (16) with the appropriate equivalent expressions given by Equation (14) for 

cTW /  leads to  

          
][0)]()[(0)]()([

c

h

h

h

c

c

h

c

ch
irrch T

Q

T

Q

T

Q

T

Q

T

Q

T

Q
TQTQS   (17)


irrcQ ,

irrQ
revcQ ,

Q

Q

W W

)(a )(b )(c

hT hT

cT cTcT
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A simple comparison of Equation (12) with Equation (17) makes evident the fact that in the latter 

irrch TQTQ )]()([   is credited with the whole of the entropy change for process 1(c); in other words, here the 
irreversible transfer of Q  appears responsible not only for its own entropy change, but also for that of the 
irreversible transfer of cQ . The fact that Equations (12) and (17) define the entropy change of the very same 
process in terms of contradicting notions, leads to the conclusion that one of these equations is at fault. The 
validation of Equation (7) and by extension that of Equation (12) carried on in Section 2.2 in terms of the first 
law and the definition of the entropy is evidence enough to put in doubt the result given in Equation (17). To 
prove that as suspected, such a result is incorrect, is the matter of the following argument which starts 
recognizing that the entropy change for irrch TQTQ )]()([   appearing in Equation (17) is not given, as should 
be expected, in terms Q , as is done by Equation (12), but in terms of both Q  and cQ  combined, or 
equivalently, in terms of hQ . In other words, even if the heat transferred is Q , the effects correspond to hQ .  
The notion embedded in Equation (17) that Q  can be both: Q  when transferred from the hot to the cold 
reservoir and not Q  in regard to the entropy change produced by this transfer violates the principle of 
contradiction. Note that both statements refer to that moment in the process in which the transfer of Q  takes 
place, and are given in respect to the concatenation of processes depicted in Figure 1. Notwithstanding the fact 
that being Q  excludes the possibility of not being Q  at the same time in the same respect, Equation (17) takes 
both of these statements as true. It is on reason of this that the entropy change given by Equation (17) for 

irrch TQTQ )]()([   is rejected as false. 

It needs to be mentioned here that there exists another perspective, independent from the one just discussed, from 
which the logical inconsistency of Equation (17) can be approached (Íñiguez, 2011, 2012). It will be briefly 
mentioned in Section 3.8. 

3.4 The Logical Imbroglio of Second Law Thermodynamics 

The rejection on logical grounds of Equation (17), and by extension of Equation (16) on which it originates, 
eliminates the contradiction of having two different entropy changes for the same process. This result simply 
confirms the truthfulness of Equation (12), previously validated in terms of the notions sustaining it. Now, even 
if Equations (16) and (17) are out of the way, it is imperative to identify the reason of their logical inconsistency. 
This will be done below. 

Let us start this discussion by writing the following expression resulting from the appropriate combination of 
Equations (12) and (15)  

                  

ch
irrcrevhirrch T

Q

T

Q
TQWSWTQSTQTQS  )]([])([)]()([  (18)

A term by term comparison between the two rightmost expressions of the previous equation allows us, on reason 
of the independence of revh WTQ ])([   and hTQ /  on cT ; as well as of the independence of 

irrcTQW )]([   and cTQ /  on hT , to make the following identifications 

                                      hrevh TQWTQS /])([   (19)

                                      cirrc TQTQWS /)]([   (20)

The substitution of Equation (20) in Equation (15) permits writing the following expression 

                                

c
revhirrch T

Q
WTQSTQTQS  ])([)]()([ (21)

Let us now agree that any claim of correctness for Equation (19) is in opposition not only to the accepted 
thermodynamic notion embodied by Equation (5) giving a zero entropy change to revh WTQ ])([   but, as 
already mentioned in regard to Equation (10), also to the second law in its zero total entropy version. Note now 
that if in acceptance of Equation (5) we replace revh WTQS ])([   in Equation (21) with a zero, we will be 
regenerating Equation (16) and through it Equation (17); both of them incorrect on logical grounds. Note then 
that it is not the cTW /  term (or equivalently, cTQ / ) of Equation (16) what makes these equations incorrect. 
This term, written as cTQ / , belongs in the correct equation for irrch TQTQ )]()([   as attested by Equation 
(18). It is the zero accompanying cTW /  in Equation (16) what allows this term to morph its identity into that 
of the terms shown in the right hand side of Equation (17). The fact that this zero comes from Equation (5) 
allows us first of all to identify this equation as the origin of the logical conundrum previously unveiled and as 
such the true object of logical rejection by the argument of the previous section; and also to confirm the validity 
of Equation (12) and through it that of Equations (19) and (20).  

These results provide us, via the substitution of Equation (19) in Equation (10), with a logically consistent 
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counterexample to the second law in the form of a reversible and isothermal ideal gas expansion with a non-zero, 
actually negative total entropy change of magnitude TQ / , i.e. 

                          TQWTQSTQTQSIRES revrev /])([)]()([][  (22)

Note that the negative total entropy for the isothermal and reversible expansion makes this process negentropic. 
Serves well in this regard to recall here that the entropy change given by Equation (19) can also found in 
Clausius work on the second law (Clausius, 1879c). 

3.5 An Isothermal and Reversible Compression 

The fact that the coupling of a reversible process with its precise inverse brings the universe back to its original 
condition means that each and every effect of the forward process is reverted by its inverse, and if this is so, the 
entropy change of the latter must be of equal magnitude but opposite sign to that of the former so that their 
combination, as corresponds to a point function, produce a net change of zero for this cycle. When applied to the 
inverse of the (IRE) introduced in Section 2.3 and whose correct entropy change appears quoted in Equation (22) 
i.e. to an isothermal and reversible compression (IRC), we will have that the following is true 

                      TQTQWSTQTQSIRCS revrev /)]([)]()([][   (23)

                                      TQTQWS rev /)]([   (24)

The different from zero total entropy changes of the isothermal and reversible ideal gas processes described by 
Equations (22) and (23) provides a glimpse at the paradigmatic changes subsumed by the replacement of 
Equation (5) by Equation (19). In order to keep expanding this new view is that the following discussions are 
presented 

3.6 A Partially Reversible Isothermal Expansion 

Let us consider the isothermal and irreversible expansion depicted in Figure 2. In it a portion cQ  out of the 
amount of heat hQ  released by the hot reservoir of temperature hT  finds a direct, irreversible path to the cold 
reservoir of temperature cT ; with the other portion, Q ,  being transformed into an equivalent amount of work, 

WQ  . Note that the work producing process is reversible on reason of the fact that Q  can be returned to the 
hot reservoir, without any additional change taking place, via an isothermal and reversible compression propelled 
with W . The fact that no work was generated in the transfer of cQ  allows us to realize that its transfer back to 
the hot reservoir cannot be accomplished without leaving a change in that body called to supply the missing 
work. These considerations permit writing the following equation for the total entropy change of this process 

                                      revirr SSprocessS  ]2[  (25)

The reversible and irreversible components of the universe entropy change can, on reason of Equation (7) and 
Equation (19) be written, respectively, as follows 

                                      )/()( chchcirr TTTTQS   (26)

                                      hhrev TWTQS //   (27)

In terms of which Equation (25) becomes 

                                 )/()]/()([]2[ hchchc TQTTTTQprocessS  (28)
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Figure 2. The isothermal expansion depicted is irreversible on reason of the fact that only the portion Q  out of 
the total amount of heat hQ , ch QQQ  , released by the hot reservoir of temperature hT  is transformed into 
work. The remaining portion cQ  bypasses the work production process by flowing directly to the cold reservoir 

of temperature cT . The irr sub index has been added to cQ  to emphasize the irreversible nature of this heat 
transfer 

 

Note now that this equation correctly reproduces the entropy changes for the two extremes there involved. If 
0cQ  then no irreversible leaking of heat takes place and hQQ  . In this situation all of the heat released by 

hot reservoir ends up transformed into work and the total entropy change becomes 

                                      hh TQprocessS /]2[   (29)

If, on the other hand, all of the heat released by the hot reservoir finds its irreversible way to the cold reservoir 
then hc QQ  . In this situation 0Q  and no work is at all produced. Therefore 

                                     )/()(]2[ chchh TTTTQprocessS   (30)

It is important realize that work is a common link to the opposite effects shown in Equation (28). Thus while the 
negentropic contribution of the reversible term given by Equation (27) appears in terms of the work (W ) output 
of the process i.e. in terms of the work “gained”:  

                                      hgainedrev TWS /  (31)

The entropic contribution of the irreversible term given in Equation (26), as previously discussed in reference to 
Equation (8), can be written in terms of the wasted work producing potential that cQ  carries with it in its 
irreversible transit to the cold reservoir, i.e. in terms of the lost work carried on by cQ  

                                      cclostirr TQWS /)]([  (32)

These last two equations allows us to write the following re-expression of Equation (25) 

                               )/(]/)([]2[ hgainedcclost TWTQWprocessS  (33)

This equation, common to other (non-reversible) thermodynamic processes involving the transformation of heat 
into work (Íñiguez, 2012), allows us to see that in this new perspective the entropy increase associated to the lost 
work is opposed by the negentropy associated to the work gained. The predominance of one of these opposite 
over the other depends on the efficiency of the operation. If the efficiency for this isothermal expansion is 
defined as hQQ /  then its value at the irreversible extreme ( 0WQ ) is zero, while at the reversible end 
( hQWQ  ) is one. It should be noted that in the zero-efficient irreversible realm in which no work is produced 
(no work produced, no negentropy) Equation (33) will lose its rightmost term to become, as previously noted in 
reference to Equation (7), the following re-expression of the law of increasing entropy: 

]/)([]2[ cclost TQWprocessS  . The previous argument allows us to see that it is at the zero-efficient 
irreversible limit where the rule of the law of increasing entropy is absolute. In this perspective the second law as 
we know it correctly describes the domain of irreversible processes. As soon as heat starts finding its way into 
the superior form of energy we call work, the description of the situation demands the use of Equation (33) or its 
equivalent re-expressions. It comes apparent from Equation (33) that on reason of being ch TT  , every unit of 
work wasted produces a larger amount of entropy than the negentropy brought forward by every unit of work 
gained. In this perspective the ‘punishment’ for wasting work exceeds the ‘reward’ for gaining it. 

Inherent to the previous discussion is the fact that the total entropy of the irreversible isothermal expansion being 
considered transits from a positive value at 0  to a negative value at 1 . But if this is so, there must be 

hT

cT

irrcQ ,

Q

W
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an efficiency o  at which the total entropy, as a reflection of identical magnitude but opposite sign 
contributions from the entropic and negentropic processes there taking place, becomes zero. This efficiency can 
be identified for the process under study by setting Equation (28) equal to zero and solving for o . When this 
done we get 

                                      hcho TTT /)(   (34)

Any of these processes taking place with o   will be entropic. All those for which o  will be negentropic, 
and those complying with o  , isentropic.  

The previous discussion unveils the fact that the entropy is more than a state function; It is also the indicator of 
the transition point from entropic to negentropic universes (or vice versa). The separation of the total entropy 
change of thermodynamic processes in entropic and negentropic contributions allows us to give precise meaning 
to the notions of thermodynamic chaos and thermodynamic order. The latter finding expression in the 
negentropic region where the effect of the ordered energy we call work overcomes that of the disordered energy 
we call heat. In the opposite case it is the former –thermodynamic chaos- the one finding expression. On this 
perspective the transition from entropic to negentropic universes can be likened with the transition from chaos to 
order and vice versa.  

If we are capable of developing expressions for the work gained appearing in self-organizing phenomena as 
spatial-functional order i.e. for the work involved in the construction and sustaining of the structures evident in 
those processes v. g. The rolls or cells appearing in Bénard Convection (Íñiguez, 2010), as well as for the work 
lost in those processes, we will be able to test via Equation (33) if as posited here, these structures materialize the 
transitions of these systems from entropic to negentropic, as well as to determine and compare with experiment 
the transition point at which disorder becomes order.  

3.7 Heat as Mechanical Energy 

Two elements of judgment are required for the argument to be presented below. The first one makes use of the 
contrast made by Smith and Van Ness between heat and work, as follows “One of the clearest interpretations of 
the second-law principle may be achieved by considering the differences between the two forms of energy, heat 
and work…”. In this regard “…experience teaches that there is a difference in quality between heat and 
work …”. The experimental facts exhibited by these authors in support of this notion are, on the one hand, the 
practically unrestricted convertibility from one form of work to another, and in the other, the severely restricted 
convertibility of heat into any form of work. The efficiencies for the latter kind of processes are so low in 
comparison with those obtained for the transformation of work from one form to another that “…there can be no 
escape from the conclusion that there is an intrinsic difference between heat and work”. This difference may be 
summarized by saying that “…heat is a less versatile or more degraded form of energy than work” and that 
“…work might be termed energy of a higher quality than heat” (Smith & Van Ness, 1965). Note that the 
previous considerations imply a common quality for the different forms of mechanical energy, or equivalently, 
for the different forms of work. These notions find complement in the common interpretation of the total entropy 
increase in irreversible processes as a “…quantitative measure, or index, of the degradation of energy as work to 
energy as heat…” (Weber & Meissner, 1957).  

The second element refers to the fact that any process taking place in a conservative mechanical system, such as 
the inter-conversions of one form of mechanical energy to another, takes place at constant entropy. 

Let us now transcribe here the total entropy expression for an isothermal and reversible expansion as written by 
Bent in accord with current thermodynamic wisdom (Bent, 1965b). 

                                     0)/()/(][ .  WtSTQTQIRES (35)

In the previous equation .WtS  refers to the entropy change of the conservative weight-in pulley system used 
by Bent as mechanical reservoir. In it the weight’s position changes in response to the heat-to-work 
transformation represented as revWTQ ])([  . Bent’s original expression makes use of the internal energy 
change of the heat reservoir for the quantification of its own entropy change as well as that of the gas. The fact 
that for a heat reservoir, as previously noted, QE  , allows re-expressing these entropy changes in terms of 
Q  as shown in Equation (35). 

From a comparison between Equations (35) and (10) two things become evident: that the term 

revTQTQS )]()([   of the latter correctly corresponds with the first two terms of the former, and that for 
second law thermodynamics, as we know it, the entropy change associated to the weight’s displacement ( .WtS ) 
is identical with that of the thermodynamic process upgrading heat into work, i.e.  
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                                      0])([.  revWt WTQSS  (36)

For the purposes of the coming discussion the two rightmost terms of the previous equation will be written as 
follows 

                                      0])([ .  revWtETQS  (37)

In it the work term has been substituted by its equivalent, the energy of the weight. 

Let us now consider the situation in which the lifting of the weight in Bent’s mechanical reservoir is produced 
via the uncoiling of a nonfrictional spring previously coupled to it. The fact that this process involves no other 
change but the transformation of the elastic energy of the spring into the gravitational-potential energy of the 
weight makes it, as previously noted, an isentropic process. These considerations are reflected in the following 
expression 

                                      0][  revWtspring EES  (38)

As made evident by a comparison between Equations (37) and (38), for current thermodynamics the 
transformation of heat into mechanical energy in Equation (37) is entropically indistinguishable from the 
transformation of elastic energy into gravitational-potential energy represented in Equation (38); in other words, 
heat as an energy form is, in regard to Equation (37), indistinguishable from any other form of mechanical 
energy, as it is capable of transiting, of morphing into the gravitational-potential energy of the weight at constant 
entropy. This conclusion is, however, in opposition to experience. As previously noted, heat is intrinsically 
different from mechanical energy. In negating this experience supported fact, the second law negates itself, as its 
foundation rests precisely in the notion that these two energy forms are intrinsically different. 

It needs to be stressed that what has been faulted is not the isentropic nature of the mechanical reservoir, but its 
identification—shown in Equation (36)—with the thermodynamic process responsible for the heat-to-work 
transformation.  

The transformation of heat into work and the entropy change to it associated is not, as current thermodynamics 
posits, an attribute of the mechanical reservoir but of the collective of bodies in it involved. In the case of the 
(IRE) it is an attribute of the heat reservoir, the gas, and the mechanical reservoir. Take any of these bodies out 
and the heat-to-work transformation cannot take place. The extreme reductionist position of current 
thermodynamics in terms of the entropies of ‘bodies’, finds its limit in the impossibility to assign the entropy 
change of the heat-to-work-transformation to any of the bodies there involved.  

When Bent’s total entropy change for the isothermal and reversible ideal gas expansion given in Equation (35) is 
looked upon at the light of the fact that transformation revWTQ ])([   involves all the bodies taking part in it 
–mechanical reservoir included- it becomes evident that it needs to be corrected via the replacement of .WtS  
by revWTQS ])([  . This simple replacement embodies the conceptual shift separating current second law 
thermodynamics from the formulation here being introduced, i.e. 

                revWt WTQSTQTQSTQTQ ])([)/()/()/()/( .   (39)

Materializing in the identification of revWTQS ])([   with TQ /  this change produces the correct result 
for the total entropy change of an isothermal and reversible ideal gas expansion: 

                                      TQIRES /][   (40)

3.8 The Spontaneous Flow of Heat From a Colder to a Hotter Body 

A different perspective to the contradictions incurred by second law thermodynamics, as we know it, in 
sanctioning two contradictory entropy changes for irrch TQTQ )]()([  , can be unveiled through the following 
argument.  

Let us then assume that that the following equation, a combination of Equations (14) and (17), is true 

                                      irrchirr TQTQScS )]()([)](1[   (41)

The problem with this equations starts once we recognize the fact, evident from Figure 1(c) that irrcS )](1[  is 
also given by the following equation 

                      irrcchcirrchirr TQTQSTQTQScS )]()([)]()([)](1[   (42)

A comparison between the last two equations highlights the point that the validity of current second law 
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thermodynamics position embodied in Equation (41) presupposes the validity of the following relation 

                                      0)]()([  irrcchc TQTQS  (43)

It is through a simple analysis of the previous equation that two important flaws subsumed by this position come 
to light. 

1) The fact that the process to which Equation (43) makes reference is reversible on reason of its entropy change 
and irreversible on reason of the fact that in 1(c) it is impossible to transfer cQ  back to the hot reservoir 
without changes remaining elsewhere, attest to the non-equivalence between the constant total entropy 
reversibility criterion and the possibility of restoring the precise initial condition of the universe. Here we have a 
reversible process that can’t be reverted. 

2) The only possibility open for the zero total entropy reversibility criterion to remain valid in regard to what 
Equation (43) expresses, i.e. the only possibility open for us to trade “irr” for “rev” in Equation (43) demands 
from cQ  the ability to flow of itself, unassisted, from the cold to the hot reservoir. In other words, the validity 
of the zero total entropy reversibility criterion, and by extension that of the total entropy increasing quality of 
irreversible processes, demands the non-validity of that principle to which the second law is supposedly 
equivalent, namely, that “heat cannot, of itself, pass from a colder to a hotter body” (Clausius, 1879d). 

3.9 The Reversible to Irreversible Transition of )]()([ cchc TQTQ     

With the problem regarding the entropy change for irrch TQTQ )]()([   finally settled, there is still the matter 
of the change experienced by )]()([ cchc TQTQ   from 1(a) to 1(c) consisting in the transition from a 
reversible condition and a zero entropy change to an irreversible condition and an entropy change of magnitude 

)/()/( cchc TQTQ  . 

Let us agree that in 1(a) no lost work is produced by the reversible transit of cQ  to the cold reservoir. If this 
were not so then, contrary to experience, processes capable of outputting larger amounts of work than the 
reversible work would be possible. The previous consideration explains, via the notion subsumed by Equation 
(8), the zero entropy change associated to the reversible transfer of cQ  (no lost work, no entropy production). 
This situation changes radically, however, once process 1(b) takes effect. Here, subsumed in the two irreversible 
transfers depicted in 1(c) we find W  reappearing as the dissipated work producing potential (the lost work) 
carried by these two heat transfers in their irreversible transit to the cold reservoir. The fact that while in 1(a) the 
transfer of revcQ ,  takes place without lost work and consequently at constant entropy, and that in 1(c) the 
transfer of irrcQ ,  is accompanied with a wasted work producing potential in the amount of )/)(( hchc TTTQ   
and an entropy change of chchc TTTTQ /)/)((   means that the entropy change for the transit from the former 
to the latter taking place on reason of 1(b) can be written as  

                                  chchcrevcirrc TTTTQQSQS /)(][][ ,,  (44)

If so, then in agreement with our previous result shown in Equation (13) we get  

                        chchcchchcrevcirrc TTTTQTTTTQQSQS /)()/)((][][ ,,  (45)

4. Conclusions 

Hailed as the supreme law of nature by Eddington (Nikulov & Sheehan, 2004), the law of increasing entropy has 
been here shown to be a logically inconsistent construction. Its correction materializes in an equation taking into 
account the opposing tendencies at the core of natural phenomena, order and chaos. Even if the evidence is clear 
and appears unassailable, the final verdict belongs, as Planck has said in this context, to experience “… no more 
effective weapon can be used by both champions and opponents of the second law than indefatigable endeavor to 
follow the real purport of this law to the utmost consequences, taking the latter one by one to the highest court of 
appeal -experience. Whatever the decision may be, lasting gain will accrue to us from such a proceeding, since 
thereby we serve the chief end of natural science—the enlargement of our stock of knowledge” (Planck, 1990).  
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