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Abstract 

In work on the basis of static model of a structure of atoms it is shown that the gravitational and electrostatic 
interactions have the same nature. The electrostatic interaction is the interaction of electric charges at small 
distances, whereas the gravitational interaction is the interaction of electric charges at large distances.  

Keywords: the gravitation nature, a binomial potential, static model of atom, the scattering of electrons by 
protons 

1. Introduction 

At the present time, the gravity remains the most puzzling phenomenon of the Nature. The paradox consists in 
that the gravitation involves all subjects existing in the world, from the Universe itself and to its 
microcomponents. However, no knowledge of the physical essence of the gravitation and a relation to other 
known interactions is available. There exist a lot of opinions on this question. We present one of the most 
characteristic thoughts. The answer of Carver Mead to the question: “Do you have any thoughts about 
gravitation?” was “… we basically have no clue what it is. It doesn’t fit with any of the other theories” (Mead, 
2001). 

We believe that the overcoming of difficulties in the comprehension of the gravitational interaction requires to 
reject completely the planetary model of the structure of atoms and molecules. Instead of the planetary model, 
we propose a model based on the binomial potential of the electron-proton interaction (Gudym & Andreeva, 
2007, 2008). In essence, we propose a static model of an atom, in which an electron and a proton and, in the 
general case, the nucleus and atomic electrons, undergo the action of two oppositely directed forces. One of the 
forces is responsible for the attraction of electric charges, and another one repulses them. These forces are equal 
in modulus at some distance from the nucleus which can be called the size of an atom. Moreover, the forces of 
repulsion in our model with the binomial potential are short-range forces. Therefore, the interaction between an 
atom as a whole and remote charges outside of the atom is mainly attractive, because the short-range repulsive 
forces at large distances are significantly less than the attractive ones. Hence, the electrically neutral atom, 
molecule, or any macro body, while interacting with electric charges of the other analogous systems, undergo 
only the electrostatic attraction at distances much more than the size of an atom. Just this is the essence of the 
proposed mechanism of gravitational interaction. 

Since the physical basis of the appearance of the gravitational interaction is given by the binomial potential of 
the interaction of an electron and a proton, our main task was to demonstrate the reality of the binomial potential 
by specific examples. To this end, we considered the classical problem on the motion of an electron in the field 
of the binomial potential of a proton and solved the Schrödinger equation with this potential (Gudym & 
Andreeva, 2008). Then we calculated the energies of ten first atoms of the Mendeleev Periodic table within the 
model of the binomial potential (Gudym & Andreeva, 2008). The results of calculations supported our 
confidence in the reality of the binomial potential.  

Then, on the basis of models of electrically neutral atoms (Gudym & Andreeva, 2008), we developed a model of 
interaction of these atoms and free charges. The study of near-atomic regions within those models allowed us to 
surely conclude that any electrically neutral atom and any electric charge positioned from it at any distance 
attract each other.  
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force. Apparently, just in this way it is possible to explain the fact that no deviations from the Coulomb law were 
found at macro distances.  

3. The Two-Body Problem with Binomial Potential 

On the next stage of our study, it was necessary to verify the reality of the binomial potential (1). With this 
purpose, we considered the two-body problem with the binomial potential and solved the equation (Gudym & 
Andreeva, 2007). 

 
2 2 2

2 22 2

mr M e Г
E

mr r r
   


,                                 (4) 

where m is the electron mass, Е is the total energy of the system, М is the angular momentum, and r  is the 
derivative with respect to time. 

The solution (Appendix B) of Equation (4) for a trajectory has the form 

            1 sin

P
r

k 



,                                      (5) 

where               
 2

4

2 2
1

E mГ M

me



  , 

2

2

2mГ M
P

me

 , 
22mГ M

k
M

 .                (6) 

In the general case, Function (5) represents two types of motion, finite and infinite ones, by depending on the 
sign of the energy in Equation (4). The former is the motion of a bound electron in a hydrogen atom, and the 
latter corresponds to the scattering of an electron by a proton. 

3.1 Hydrogen Atom 

Let us consider firstly a finite motion. The solution of (4) differs from the well-known solution of the Kepler 
problem with the Coulomb potential only by the presence of the coefficient k of the argument . In the general 
case, the presence of this coefficient leads to the appearance of a circular motion of the perihelion. It follows 
from relations (6) that if the positive term in (1) is dropped, then k = 1, and the trajectory corresponds to a 
conical cross-section with the focus at the origin of coordinates. The nonzero positive term makes a value of the 
coefficient k to be different from 1. This means that the trajectory of motion will be unclosed in the general case. 
Only separate values of the coefficient k will satisfy the conditions of closedness. In other words, if the electron 
with any energy in the Coulomb field can move only along a closed orbit, its motion along a closed orbit in 
potential (1) can be realized only at strictly definite values of the energy (Born,1946). 

By solving Equation (4) under the condition E < 0, we succeeded to obtain the discreteness of energy levels, 
Balmer formula, and Planck’s constant and relation (Gudym & Andreeva, 2013, 2007).  

3.2 Scattering of Electrons by Protons 

If the total energy (4) is positive, then the motion trajectory of an electron in the central field of a proton will be 
an unclosed curve, whose beginning and end are at infinity. Since the motion is infinite in this case, it is 
convenient to introduce the so-called impact parameter ρ instead of the constant angular momentum M: 

22M mE .                                     (7) 

To describe the trajectory of motion of the electron scattered by the proton, we substitute (7) in relations (6) and 
pass to the Cartesian coordinates  

x r cos   , siny r                                  (8) 

where the values of r should be determined by Formula (5). 

In Figure 2, we show the trajectories of motion of scattered electrons with energies of 400, 188, and 40 MeV 
calculated by (8). It is seen that if the motion occurs in the Coulomb potential field, no scattering of electrons 
with such energies is observed. 
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By substituting the result of differentiation of Formula (16) in the formula for the effective scattering 
cross-section (15), we obtain 

4

2
4

1

16
sin

2

e
d d

E
 


  

 
 
 

.                             (17) 

By the form, this formula repeats exactly the Rutherford formula (Levich, 1969). But formula (17) differs 
basically from the Rutherford one in the definition of the angle χ with reagard for coefficient (14): 

02                                        (18) 

In Figure 3, we compare the curve calculated by Formula (17) for the effective scattering cross-section of 
electrons with energies of 400 and 188 MeV with the experimental data from work (Hofstadter, 1956). 

Generally speaking, it is the unexpected result. Indeed, it is commonly accepted (Hofstadter, 1956; Levich, 1969) 
that the Rutherford formula must not work in the region of relativistic energies. However, the whole sequence of 
above-performed mathematical operations corresponds exactly to the derivation of the Rutherford formula for 
the Coulomb potential and indicates that the uses of the binomial and Coulomb potentials yield the same formula 
for the effective scattering cross-section.  

The situation becomes different, if we calculate the trajectories of motion of an electron. It follows from Figure 2 
that the results of calculations of the trajectories of motion of high-energy electrons in the Coulomb field are 
unphysical. On the contrary, the trajectories of motion of electrons with any energy within the binomial-potential 
model are quite real.  

Thus, we manage to deduce a single formula similar to the well-known Rutherford one for the calculation of the 
trajectories of motion and the scattering angles of electrons by protons for the entire range of energies of the 
scattered electrons from several eV up to ultra relativistic energies and with impact parameters down to 10-13 cm. 
It is worth separately noting that our formulas do not require any modification within the other theories for 
different energies (Hofstadter, 1956; Levich, 1969), which is necessary in the Rutherford approach.  

Hence, we may conclude that the binomial potential of the interaction of an electron and a proton reflects more 
exactly the character of forces acting between an electron and a proton, than the Coulomb potential.  

4. Static Models for Ten First Atoms of the Mendeleev Periodic Table  

To support the reality of the binomial potential, we proposed static on it to basis models of ten first atoms of the 
Mendeleev Periodic table within our model in the form of geometric plane or volumetric structures, where the 
nucleus is located at the center of the structure, and the electrons are positioned at its vertices (Figure 4, Gudym 
& Andreeva, 2008). 

To verify the validity of such models, we calculated the electron interaction energy for each of those atoms.  

As an example, we present the formulas for some atoms. 

Helium atom: 

        
2 2

02 2 2

4 2e e A
E

r r R R

     ,                              (19) 

where E02 is the electron interaction energy; r is the distance of electrons from the nucleus; R is the distance  
between electrons; and A is the magnetic interaction constant (A = 3.107×10-28, Gudym & Andreeva, 2008). 

Beryllium atom: 

   
2 2 2 2 2

04 2 22 2 2
1 2 1 2 1 2 1 2

8 8 2 2 4 4

2 2 2 2

e e e e e A A A
E

r r r r R r r R r r

                        (20) 

where E02 is the electron interaction energy; R is the size of a rhomb edge; r1 and r2 are the distances of 
oppositely located electrons from the nucleus which are related to the rhomb edge as follows: r1 = Rsinα and r2 = 
Rcosα; and α is the angle between an edge and the major diagonal.  

To verify the validity of such models, we calculated the electron interaction energy for each of those atoms.  

As an example, we present the formulas for some atoms. 
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of the pyramid base from the nucleus; r2 is the distance of electrons located at vertices of the pyramids from the 
nucleus; R is the length of a lateral edge of the pyramid. The values of R, r1 and r2 are connected by the relations: 
r1 = Rsinα and r2 = Rcosα, where α is the angle between a lateral edge and the pyramid base.  

The results of calculations of the binding energies of electrons in each of the proposed models of atoms are given 
in Table 1.  

 

Table 1. Comparison of the theoretical and experimental values of binding energies of electrons in atoms. 

 

Thus, the possibility to construct the static models of atoms by the same principle with the same constants 
testifies, in our opinion, to the reality of the binomial potential.  

5. A Model for the Study of Near-Atom Regions  

Models for the study of the interaction of electrically neutral atoms with free charges were constructed on the 
basis of the models proposed by us (Gudym & Andreeva, 2008), for neutral atoms (Figure 4). For example, if we 
imagine that the hydrogen atom consists of a proton and an electron located at the distance r0 from it, then the 
model of the interaction for such a system with a free electron e0 or a proton p0 can be presented in the form 
shown in Figure 5. 

The electron interaction energy E is as follows: 

                     
2 2 2

2 2 2
0 0

e e e A
E

r r R R r r

        .                          (22)  

where A is the constant of the magnetic interaction of two electrons (Gudym & Andreeva, 2008); R is the 
distance between the electron e0 or the proton p0 and the atomic nucleus; r0 is the equilibrium radius of a 
hydrogen atom; 

  2 2
0 02 cosr r R r R                                   (23) 

and α is the angle between the fixed coordinate axis and the direction R to the free electron e0 or the proton p0. 

The interaction energy E of the proton of the hydrogen atom is given by the formula 
2 2 2

2 2 2
0 0

e e e
E

r r R R r r

        
                           (22') 

 

 
Figure 5. Model of interaction of a neutral hydrogen atom with trial charges: e0-electron and p0-proton 

Elements H He Li Be B C N O F Ne 

 
E, 
eV 

exp 13.595  78.969 203.44 399.03 671.08 1030.03 1485.74 2043.20 2713.03 3507.71

theor 13.607 78.344 204.07 401.77 673.57 1029.40 1488.86 2037.00 2674.32 3504.59

Error, % +0.1 –0.8 +0.3 –0.3 +0.4 –0.1 +0.2 –0.3 –1.4 +0.1 
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intra-atomic distances is significantly more complicated than that observed at distances larger than 1×10-8 cm. 
But the consideration of this problem is outside of the present work. 

6. Conclusion  

The purpose of the present work was to clarify the nature of the gravitational interaction. To this end, we 
developed a method for the calculation of a numerical value of the interaction energy of the atomic system with 
trial charges located at various points of the near-atom region. Then we considered the near-atom regions for ten 
first elements of the Mendeleev Periodic table. On this way, the analysis of electrostatic fields present in the 
near-atom regions for electrically neutral atoms allows us to understand the reason for the appearance of the 
attraction between electrically neutral bodies. 

For the complete comprehension of the mechanism of appearance of the gravitational interaction, we need to 
consider this difference not only near a nucleus or at the boundary of an atom, but also at large distances from 
the atom.  

The difference between the Coulomb and binomial potentials near a nucleus results in the dominance of the 
repulsive component of the binomial potential at small distances as compared with the attractive Coulomb 
component. This makes an atom to be a stable system. 

Here, we should like to make a remark in order that the reader will not identify the stability of an orbit and the 
stability of an atom. When we consider the former in the sense of the Bertrand theorem, we mean only a 
one-electron system of the hydrogen-atom type. But if we write generally about the stability of an atom, we 
mean many-electron systems. According to our static model (Figure 4), electrons and the nucleus of such 
many-electron system are in the stable equilibrium position with respect to one another. In other words, each 
electron is located in the own potential well, where there is no orbital motion, as distinct from the other old 
models of atoms. Hence, any connection between the stability of orbits and the stability of an atom has no 
physical sense. 

Let us now consider (qualitatively) how the ratio of attractive and repulsive forces will be changed, as the 
distance from a nucleus will increase. In this case, the repulsive force decreases faster than the attractive 
Coulomb one. Therefore, they become equal in modulus at some distance from the nucleus. This distance gives 
the size of atom. For greater distances from the atom, the repulsive force will be less in modulus that the 
attractive Coulomb one. It is essential that the repulsive force does not disappear completely. As the distance 
from the atom increases, both forces decrease, and the dominance of the Coulomb component will increase more 
and more. Thus, the residual electric field exists outside the limits of each electrically neutral atom. The 
interaction of such fields is responsible for the attraction between electrically neutral atoms, molecules, and, 
generally, macrobodies. All this is illustrated in Figures 1, 6, and 8. 

At the present time, many theories of gravitation are available. But their common shortcoming is that they cannot 
join the gravity with any other interaction known in physics. But we succeeded, for the first time, to find such 
general criterion that allows us to connect the gravity with the electrostatic interaction. At this point, our theory 
made a significant step forward on the way of cognition of the nature of gravitation as compared with the other 
available theories related to the gravity. 

Thus, we have succeeded to strictly prove that the gravitational and electrostatic interactions have the same 
nature, so that the gravitational interaction is not caused by some unique field created by electrically neutral 
bodies. In our opinion, the gravity is related to the well-known electrostatic field and possesses, like all electric 
fields, the properties of Faraday-Maxwell force fields. We note that our conclusion agrees completely with the 
results of the Logunov’s relativistic theory of gravitation (Logunov, 1987).  

Hence, the attractive forces existing between electrically neutral physical bodies (gravitational forces) arise as a 
result of the electrostatic interaction of electrically neutral atoms with the electric charges of other, also 
electrically neutral, atoms. 

The equivalence of the Coulomb and Newton laws can be also shown by comparing the dimensions of the 
quantities in the formulas of these laws. Let us consider the equalities 

2 2 3 3 2 2

2 2 2

e M L M L M L M
E erg

r r T L M T L T
        

  
                    (25) 

Where γ is the gravitational constant; M is the mass; L is the length; and T is the time. 

In (25), the second and third equalities present, respectively, the Coulomb and Newton laws. The substitution of 
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the corresponding dimensions (fourth and fifth equalities) leads us to the same energy unit in the CGSE system, 
which demonstrates once more the equivalence of the Coulomb and Newton laws. 

This connection follows easily from the following reasoning. 

As is known, all electrically neutral bodies in the Nature reveal always the mutual attraction. In our work, we 
have shown that all neutral atoms and molecules (see Figures 5–8) manifest also the mutual attraction to the 
remote electric charges irrespective of whether these charges are positive or negative, i.e., to electrons and nuclei 
on the same basis. 

In other words, we have shown that the attractive forces between electrically neutral bodies bear the electrostatic 
character. Earlier, the attractive forces between bodies were called the gravity forces. Hence, we can surely assert 
that both electrostatic and gravitational forces have the same nature, i.e., they are equivalent.  

Generally speaking, the notion “gravitational interaction” establishes only the fact of attraction of bodies. Since 
we have found that the attraction between bodies appears as a result of the electrostatic interaction, we have the 
firm basis to identify the gravity with the electrostatic interaction.  
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Appendix A.  

The solution of system of the Equations (2) 
2

0
0 0

x

e Г
E

r r
   ,   

2

2 1
0 0

0
x

e x Г

r r 

                              (2) 

 By reducing this system to the form 
2

0
0 0

x

e Г
E

r r
   ,   

2

0 0

0
x

e Г

xr r
                             (A1) 

And by adding term-by-term, we obtain the equality 
2 2

0
0 0

e e
E

r xr
   .                                 (A2) 

It can be easily transformed to the relation 
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2

00

e

rE
1

x

1 


                                  (A3) 

By substituting the numerical values of E0, r0, and e2 from handbooks, we obtain that х = 2 with the error in the 
fifth decimal point (1.999934). This corresponds to the accuracy of the relevant constants 

11 10 8
0 02.17977 10 , 4.80298 10 , 0.52917 10E e r         .               (A4) 

 With this value of х, the second equation of system (2) becomes 
2

0

2

e r                                       (A5) 

Thus, the above-presented solution of system (2) for Г and x gives 

Г=6.1027610-28 (CGSE units) and x = 2                       (3) 

We note that the special attention should be given to the value of x equal to 2. This is of importance because this 
value was obtained as a result of the exact solution of the system of two equations corresponding to the ground 
state of a hydrogen atom. We emphasize that only such value of x for the binomial potential allows us to exactly 
integrate the equations of motion. In other words, this result makes the binomial potential to be applicable to 
other problems of atomic physics.  

Appendix B. 

The solution of the Equation (4) 
2 2 2

2 22 2

mr M e Г
E

mr r r
   


                                (4) 

In the general case, this equation has the form 

 
2 2

22 2

mr M
E U r

mr
  

                                (B1) 

This yields 

    
 

2

2 2

2dr M
r E U r

dt m m r
     

       
 

2

2 2

2

dr
t

M
E U r

m m r


   


               (B2) 

Using the well-known conservation law of the angular moment 
2M mr   ,                                   (B3) 

We write 

2

d M

dt mr

  or
2

M
d dt

mr
  .                            (B4) 

Substituting dt  to the last relation, we obtain  

 

2

2

2
2

M
dr

r
M

m E U r
r

 
   

 .                            (B5) 

This formula presents the general solution of the posed problem to determine the connection between the 
radius-vector and the angle of its rotation. That is, we obtained the equation for trajectories. 

Substituting the binomial potential  
2

2

e
U r

r r

    to the last formula, we arrive at the expression 
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2

2 2

2 2
2

M
dr

r

e M
m E

r r r

 
    
 

                            (B6) 

The integration was performed with the use of the tabular formula 

2 2

1 2
arcsin

4

dr a br

ar a br cr r b ac


   .                     (B7) 

As a result, we have 

 
 

2 2

2 2 4 2

2
arcsin

2 2 2

me r m MM

m M r m e mE m M


  
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    
.                  (B8) 

Introducing the designations 

 2

4

2 2
1

E mГ M

me



  ,

2

2

2mГ M
P

me

 , and 
22mГ M

k
M

 ,              (B9) 

We obtain the formula for a motion trajectory in the form 

 1 sin

P
r

k 



.                                  (B10) 

Generally speaking, the reader can have some doubts as to the reality of the equation of orbits (5). At the present 
time, it is commonly accepted that this problem is solved in a finite form and describes the closed trajectories 

only with the fields proportional to 
1

r  and 2

kr
, according to the Bertrand theorem. But this is not the case, 

since an important thing is omitted. The Bertrand theorem is valid only if we consider the closed trajectories 
under arbitrary initial conditions, i.e., under any initial values of the energy and the angular momentum 
(Zhirnov, 1980). Under definite initial conditions, the closed trajectories can be obtained with other potentials. 
Our exact solution of this problem with the binomial potential indicates that if the Coulomb law is supplemented 

by a positive term proportional to 2

1

r , then the two-body problem can be also solved in a finite form. But it 

should be mentioned that, in order that the trajectories be closed in our case, we must set the corresponding 
initial conditions, i.e., a certain collection of values of the energy and the angular momentum. In Appendix 1, we 
gave attention to the value of the exponent. If 2x , we cannot obtain the exact solution of Equation (4). Thus, 
we have found one more potential, for which the two-body problem admits a finite solution.  
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