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Abstract 

We use conservation of energy and momentum to show the metric of a gravitational or electromagnetic plane 
wave pulse is flat. 
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1. Introduction 

A class of Lorentz covariant theories of gravitation that includes general relativity was shown not to satisfy 
conservation of energy (De Paepe, 2012). There we considered a photon moving along a fixed line towards a 
particle on the line. In the present article we will consider a gravitational or electromagnetic plane wave pulse 
incident on an atom that emits a photon. There will be an exchange of energy and momentum between the pulse 
and the photon. We will require energy and momentum are conserved. This restriction will limit the form of the 
metric of the pulse.  

Consider a gravitational or electromagnetic plane wave pulse moving in the direction of the positive  axis with 
symmetric total energy-momentum tensor  having components 

       ,   0                (1) 

such that 0 for  and 	∞. Let the components of the metric be a functions 
of only  and have 	  for . For  there is no additional restriction on the 
metric other than it must be the metric of a gravitational or electromagnetic plane wave pulse. 

2. Lorentz Transformations 

We will now construct a Lorentz transformation that will leave the components of (1) unchanged (De Paepe, 
2009). Let  be the Lorentz transformation that is a composition of a rotation by  about the  axis, a 

boost by  in the direction of the rotated  axis, followed by a rotation by  about the  axis. 

We have  is 

   	 1 2 csc 	2 	 cot 2 cot                        (2) 2 	 cot 	 3 2	 csc 2 cot  	 2 	 cot 2 	 cot 	 ,  

Now  satisfies . Also  transforms a test particle with speed one in the direction of 
the positive  axis to a test particle with speed one in the direction of the ′ axis. 

The total energy-momentum tensor  and contravariant form of the metric  transform under Lorentz 
transformations as 

     ′ 	    	 ′ 	                         (3) 

So by (1) and (3) for  

    ;  < ∞         (4) 
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and by (3) for  	 4 	2sin 	8 	 cossin 	 4 	3 2 	sin  

	 	 4	 4	 4	                   (5) 

Since 	  is a function of only  we have for  that ′  is a function of only ′.  

Consider a frame of reference with coordinates ̂ , , , ̂ related to the coordinates , , ,  by the Lorentz 
transformation 

     ̂ 	    	      ̂                            (6) 

Consequently by (1), (3) with primes replaced by hats, and (6) 

  ̂ ̂- 	 	                           (7) 

and 

       									 ̂ ∞                           (8) 

and by (3) with primes replaced by hats and (6) 

       	 	                               (9) 

Also  will be function of only ̂ . 

3. Conservation of Energy 

Let ℱ’ be the frame of reference with the coordinates , , , ′ of section 2. In this section we will use 
conservation of energy to show the function | | of  and , , , ′ has a maximum. 

Let ℱ be a free falling frame of reference with coordinates ̅, , , ̅ and with metric  at the origin. Let 
there be a atom  in an excited state that is at rest at the origin with respect to ℱ. After some time let  emit a 
photon  of energy  with respect to ℱ . With respect to ℱ  let ̅  be the components of the 
energy-momentum four-vector of . We have ̅  and ̅ ̅ ̅ ̅ . With respect to ℱ’ 
let ′ be the components of the energy-momentum four-vector of  at the time of emission. We have 

   ′ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅                      (10) 

With respect to ℱ’ at some time let  be at rest at a point in advance of the pulse. In advance of the pulse the 
system is inertial so if γ is emitted before the pulse reaches  the energy of  at the time of its emission will be 

 with respect to ℱ’. After some time the pulse will be incident on . By (4) and conservation of energy the 
amount of energy that  and hence  can gain from the gravitational field of the pulse is limited so the amount ′  can increase from  is limited. Consequently the function ′ of , , , , ′, and ̅ , ̅ , ̅ , ̅  where  ̅ ̅ ̅ 	 ̅ 	  has a maximum. Note for each  we are starting with  at rest in 
advance of the pulse. Now ′  will be less than or equal to the maximum and  can be emitted in any direction 
so we can vary , , , , , and vary ̅ , ̅ , ̅  but keep ̅ ̅ 	 ̅ 	  to conclude from 

(10) that the functions ̅ of  and , , , ′ have maxima. Since  

  ′ 	 ̅ ̅ ̅ ̅                 (11) 

we have the function | | of  and , , , ′ has a maximum. 

4. Form of Metric   

Since the function | | of  and , , , ′ has a maximum we must have by (5) that 
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2 0,   		 0,   3 2 0, 

               2 0                                  (12) 

Interchange  and  in the transformation . Using a similar argument  

               0,  3 2 0,  2 0                (13) 

from which we can conclude . A rotation about the  axis leaves  unchanged. Make a rotation 
about the  axis and using a similar argument as before gives 0. Consequently by (12), (13), and 0 we can conclude that conservation of energy implies the metric is of form 

                 (14) 

5. Conservation of Energy and Momentum  
In this section we use conservation of energy and momentum to show 1. Let ̂ be the components of the 
energy-momentum four-vector of  with respect to the frame of reference of section 2 with coordinates ̂ , , , ̂. We have 

    ̂ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅                        (15) 

By (8) the amount of energy and momentum of the gravitational field in any cylinder with axis parallel to the  
axis goes to zero as → 1. By conservation of energy and momentum the amount of energy  and hence  
can gain or lose from the gravitational field of the pulse goes to zero as → 1. Consequently ̂ →  

uniformly as → 1 independent of direction of emission of . We must have by (15) that ̅ → 	  

uniformly as → 1. By 

   	 ̅ ̅ ̅ ̅ 	                  (16) 

We have → 1 uniformly as → 1. By (9), (14), and the fact that → 1 uniformly as → 1 we 
can conclude 1. 

6. Conclusion 

The curvature tensor (Weinberg, 1972) of (14) with 1 is zero. The metric is then flat. For a metric and a 
total energy-momentum tensor that are covariant with respect to Lorentz transformations we showed 
conservation of energy and momentum implies the metric of a gravitational or electromagnetic plane wave pulse 
is flat. 
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