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Abstract  
The present article discusses the problems of relativistic invariance and commutation relations at unitary 
quantum theory. The scalar analogue of the main (principal) equation of the unitary quantum theory together 
with the Poisson equation are solved numerically in this paper. The value of the fine-structure constant, are 
found, which are in good agreement with the experiment. The evaluation of the electrical form factor of such a 
particle is also carried out. 
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1. Introduction 
In the standard quantum theory, a micro-particle is described with the help of a wave function with a 
probabilistic interpretation. This does not follow from the strict mathematical formalism of the nonrelativistic 
quantum theory, but is simply postulated. A particle is represented as a point that is the source of a field, but 
can not be reduced to the field itself and nothing can be said about its “structure” except with these vague words. 
Modern quantum field theory can not even formulate the problem of finding a mass spectrum. 

This dualism is absolutely not satisfactory as the two substances have been introduced, that is, both the points 
and the fields. Presence of both points and fields at the same time is not satisfactory from general philosophical 
positions – “razors of Ockama”. Besides that, the presence of the points leads to non-convergences, which are 
eliminated by various methods, including the introduction of a re-normalization group that is declined by many 
mathematicians and physicists, for example, P. A. M. Dirac.  

The original idea of Schroedinger was to represent a particle as a wave packet of de Broglie waves. As he wrote 
in one of his letters, he “was happy for three months” before British mathematician Darwin showed that such 
packet quickly and steadily dissipates and disappears. So, it turned out that this beautiful and unique idea to 
represent a particle as a portion of a field is not realizable in the context of wave packets of de Broglie waves. 
Later, de Broglie tried to save this idea by introducing nonlinearity for the rest of his life, but wasn’t able to 
obtain significant results. It was proved (Lyamov et al., 1969) that every wave packet constructed from de 
Broglie waves with the spectrum a(k) satisfying the condition of Viner-Pely (the condition for the existence of 
localized wave packets)  

 
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a(k)ln
2 


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becomes blurred in every case. 

There is a school in physics, going back to William Clifford, Albert Einstein, Erwin Schrödinger and Louis de 
Broglie, where a particle is represented as a cluster or packet of waves in a certain unified field. According to M. 
Jemer’s classification, this is a ‘unitary’ approach. The essence of this paradigm is clearly expressed by Albert 
Einstein’s own words: “We could regard substance as those areas of space where a field is immense. From this 
point of view, a thrown stone is an area of immense field intensity moving at the stone’s speed. In such new 
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physics there would be no place for substance and field, since field would be the only reality . . . and the laws of 
movement would automatically ensue from the laws of field.” 

However, its realization appeared to be possible only in the context of the Unitary Quantum Theory (UQT) 
within last two decades. It is impressive, that the problem of mass spectrum has been reduced to exact analytical   
solution of a nonlinear integro-differential equation. In UQT the quantization of particles on masses appears as a 
subtle consequence of a balance between dispersion and nonlinearity, and the particle represents something like 
a very little water-ball, the contour of which is the density of energy (Sapogin et al., 2008a, 2008b, 2010a). 

Following, in essence, this general idea, the Unitary Quantum Theory (UQT) represents a particle as a bunched 
field (cluster) or a packet of partial waves with linear dispersion, and the particle is identified with some field. 
Dispersion is chosen in such a way that the wave packet would periodically disappear and appear in movement, 
and the envelope of the process would coincide with de Broglie wave (Sapogin, 1973, 1979, 1980).  

2. Common Approach 
Based on this idea, the relativistic-invariant model of such unitary quantum field theory was built (Sapogin, 1973, 
1979, 1980): a model of the unitary field theory where a particle with mass m is described by the equation 

0i m
x



   


                                   (1) 

and each component s
 
of the wave function satisfies the second order equation 

2
2 0s

su u m
x x

 
 
   

 
,                                (2) 

so that the commutation relations for matrices   have the form 

   2g I                                         (3) 

where 
1 v

( ,x); ( , )x t u 

 
   is the particle velocity; , 0,1,2,3   ; a metrics with signature (+,-,-,-) is used; 

c and h equal 1, and repeated indices are assumed to be summed. 

2.1 The Commutation Relations 
For Equation (1) to be the starting point of the theory, the equation should first result in the correct 
energy-momentum relation for a free particle and then be the Lorentz covariant. Equation (2) meets the former 
condition in the form 

 2 2p u m
   

Matrices are functions of the particle velocity, and thus the commutation relations (3) alone are insufficient for 
proving invariance of Equation (1) under the Lorentz transformations; therefore let us first specify the functional 
dependence of the matrices on the velocity. Since the trivial solution 

Iu   

is totally uninteresting, let us consider the case of linear dependence on the velocity 

      4


   u                                  (4) 

where   and 4  are numerical matrices. The condition (3) holds identically if 

 2 g g g g I              

         4 4 4 4 2g I                                         (5) 

4 4 0         
Because of the antisymmetry of     , only ten out of the twenty matrices are independent quantities. 
These matrices mutually anticommute, the square of four of them is equal to unity and that of six, to minus unity. 
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To put it differently, Equation (5) is specified by ten generatrices of the alternion algebra 4
11A , which is 

isomorphous with the algebra of the sixteenth order quaternion matrices (Zaitsev, 1974). Since they are not 
convenient, let us replace the quaternion matrices with ten complex, irreducible, unitary 32nd order matrices 

        1  
 
 ,     14 4  

 
                             (6) 

This situation arises in construction of Dirac matrices, which are usually chosen as complex fourth order 
matrices even though the equation 

2g I          

is satisfied by four second–order quaternion matrices. 

From Equations (5) and (6) it follows that four matrices are Hermitian and six are anti-Hermitian 

       0 0a a 

 ,  ab ab 


  , a,b=1,2,3,4                        (7) 

If a matrix   is introduced 

     12 13 14 23 24 34       , 1                              (8) 

then the Hermitian conjugations conditions (7) can be rearranged into 

       1   
                                   (9) 

Represented in the form (5) the commutation relations are unwieldy and inconvenient in proving the relativistic 
invariance; however, they can be represented in a simpler form. Let us define a symmetrical tensor g   

     00 11 22 33 44 1g g g g g          0g   if                          (10) 

henceforth subscripts of initial letters of the Greek alphabet , , ,     take on values from 0 to 4 while those 
of the middle of the alphabet from 0 to 3. The inverse tensor g  provides a compact restatement of 
commutation relation (5) 

   2 g g g g I                                      (11) 

Equations (4), (10) and (11) make it possible to prove the relativistic invariance of Equation (1) by using a 
five-dimensional group of transformations of coordinate O(4,1). For this purpose extend Equation (1) to the case 
of a five-dimensional pseudo-Euclidian space with a metric tensor (10) 

    0i u m
x


 

   


                               (12) 

(where u  is the 5-velocity, 0u u
  ) and then prove invariance of this equation under the group of 

five-dimensional transformation O(4,1), which contains the Lorentz group as a subgroup. Under reduction of O 

(4,1) to the Lorentz group, we assume that 4 4, 1x Const u   and 
4

1
x

 


 then we have Equation (1); in 

other words, one can assume that Equation (1) is invariant under five-dimensional transformations, but the 
physical solution does not depend on the fifth coordinate. Incidentally, Equation (12) can be interpreted 
differently, but we will not discuss these possibilities, for using the five dimensions is merely a convenient tool, 
which enables us to make full use of simplicity of the commutation relations (11). 

2.2 The Invariance of the Equation 

To prove invariance of the equation, it is sufficient to show (Zaitsev, 1974) that for any transformation of 
coordinates 

 '
x a x  

 ; 

      ' 'x x inv
                                      (13) 
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there is a linear transformation S(a) of wave functions, the primed and unprimed reference frame 

     ' 'x S a x  ; 

         1 ' 'x S a x                                  (14) 

and  ' 'x  is a solution of the equation, which has the form of Equation (12) in the primed reference frame 

     
 

 ' ' '
'

0i u m x
x


 

 
   
  

                             (15) 

Substitute (14) into (12); multiply the left-hand side by S(a), and use the definition (13) to have 

 
 1 ' ' '

'
0iS S a a u m x

x

  
   

 
   
  

 

This equation coincides with (15), if the matrix has the property 

  1a a S S   
                                       (16) 

Construct S for the infinitesimal proper transformation of the group O (4,1) 

a  
     ; 

 a g                                       (17) 

with 

                                                (18) 

Expand S in power of   and keep only linear terms 

1
1

4
S 

                                       (19) 

where      by Equation (18). Substitute Equations (17)-(19) into Equation (16), keep first-order terms 
in  , use the notation [B,C] = BC-CB for the commutation brackets and have 

2 , g g g g                      

The antisymmetric solution of this equation 

   
1

,
2

g  
                                       (20) 

is, by virtue of diagonality of the metric tensor and antisymmetry of  , a sum of mutually commutating terms; 
in particular, σ12 has the form 

12 20 10 23 13 24 14          
According to Equation (19) S for an infinitesimal transformation is given by 

1
1 ,

8
S g  

         

Hence, for rotation through a finite angle ω about this axis in the direction labeled n is represented as 

          
1

exp
4

nS P
   

 
                                (21) 
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where nP  
is the generator of rotation about this axis. The matrix S is not, generally speaking, unitary but 

formula (9) easily shows that 
1       , 

consequently, for proper transformations 
1 1S S                                        (22) 

Let us consider improper transformations of space reflection and time reversal. For space reflection the matrix a 
is diagonal 

0 4 1 2 3
0 4 1 2 3 1a a a a a        , 

then Equation (16) for the space reflection operator P is satisfied by 

  01 02 03 14 24 34 1P P P                                     (23) 
which ensures invariance of both Equation (1) and Equation (12). 

Construct a transformation of the time inversion; for this purpose introduce an interaction of a particle whose 
charge is e with an external electromagnetic field  , kA A   by means of the gauge invariant substitution 

i i eA
x x  
  
 

 

and rewrite Equation (1) in the form (Sapogin, 1979, 1980; Sapogin et al.,1984): 

0 0k
kk

i i eA m e H
t dx

                  
 

Determine transformation T as such that if    ' ' ' ', Tt t t T t      ; then the latter equation becomes 

       
' '

0 1 1 ' '
'

t
Ti T THT t

t


  


 


 

When the sense of time is reserved 

' ' ' '
0 0 ; ; ; k k

k ku u u u A A        

and, before all, it is necessary to change the sign between two terms 
k

i
x




 and keA ; therefore the 

transformation is regarded as a complex conjugation operator multiplied by the matrix T: 

   '
T T t T t                                    (24) 

This gives 

 
 

 
' '0 0

1 1 ' 1 ' '

' '
( )

k

k
k

t
i T T T T i eA m e T T t

t x


    
  

  
                            

 

and for invariance of the equation it is necessary that 

                  
0 2 4 04

1 0 1 2 1 4 1 04; ; ;
k k k

k k kT T T T T T T T       
   

         .             (25) 

Thence it immediately follows that TTT   1 , though the explicit form of the matrix T depends on the 
particular representation of the matrix  . Note that there is just one matrix 

4


 
 



  

which commutes with both generators   for the representation of the group O(4,1) and with the operators of 
discrete transformation P and T. Under reduction of O(4,1) to the Lorentz group two more matrices 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 3; 2013 

104 
 

04 14 24 34
1 2 1;         

are generated which commute with the generators  of the representation of the Lorentz group and 
anticommute with P and T. Consequently, formulae (21), (23)-(25) specify the reducible representation of the 
Lorentz group and this representation is double-valued. Indeed, consider a particular case, rotation through angle 
ω about the Z-axis. In this case 12 21 1Z ZP P   ; using the explicit form of 12  we have 

  












































2
sin

2
cos

2

3

2
sin

2
cos

2
cos

2
exp 2

212
212312 

S
 

20 10 23 13 24 14 3s in
2

       
 
 

 

The half-angle is an expression of the double value of the wave function transformation. Therefore the 
observables in the theory should be bilinear in  x . The matrix  makes it possible to determine the adjoint 
wave function   


 , which is a solution of the adjoint equation 

0i m
x



  


  


 

An adjoint wave function under an arbitrary transformation of the coordinates should be transformed by the 

equation ' 1S   
 

   which for proper rotations (22) leads to ' 1S 
 

 , for space and time inversions 
'

P P 
 

   and ' 1T 
 

  , respectively. The adjoint wave function and the matrices 1,   and 2  

make it possible to construct four independent scalar functions 1; ; ;    
  

 and 2 


, which under 

space and time inversions are transformed as 

  
_

' '
P P  


   ' '

T T  
 

                              (26a) 

_
' '
P P   


   

_
' '
T T   


                          (26b) 

' '
1 1P P   

 
  

_
' '

1 1T T   


                           (26c) 

  ' '
2 2P P   

 
  

_
' '

2 2T T   


                         (26d) 

Following the classification of (Costa de Beauregard, 1957; Zaitsev, 1974), the quantities (26a-d) are singular 
and simple pseudo-scalar and singular and simple scalar, respectively, each of these functions being a unique 
scalar function of the associated type, quadratic in Φ(x). To obtain a numerical scalar let us use a representation 
of the function Φ(x) as a four-dimensional Fourier integral.  Since each component of Φ(x) satisfies the second 
order equation (2), the general solution represented entirely in relativistic terms has the form  

      
 

    24 2
3

2

2
e

2

ik xx d k k u m k


 
  


                         (27) 

where 

       2 2 1

2
k u m k u m k u m

m
  

          

is the relativistic δ-function and the amplitude Φ(k) = Φ(k0, k) satisfies the equation   

    0k m k
    for  2 2ku m  
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Because the integrand includes a δ-function, the integration is performed over just two Lorentz-invariant hyper 
surfaces kμμ

μ= ±m, rather than the entire four-dimensional k-space. This allows for decomposing the integral (27) 
into two summands 

       x x x     ;    
 

   4
3

2

1

22

k u m
x d k k

m




 


  


         (28) 

Using this representation and integrating over the three-dimensional volume, we have 

     
_

4

2

dV dV i
u u d k k u m k k

mx x
  

 
     

 


 

     
      

_ 0

0 0 0

2 ku ku
kexp ,k ,k

2

dV dV i ix m m m
u u d

mx x u u u
 

 

    
 


 

                    
  


    

Combining these relations and using the equality 

        2 2k u m k u m k u k u m   
            

we find that 

            24 2dV
u u i d k k u k u m k k

x x
   

  
      




      

  
 
              (29) 

where 

  1, 0

1, 0

 if ku
ku

if ku


 
    

 

The right-hand side of Equation (29) is explicitly represented in covariant form, which facilitates a study of 
properties, which can be traced to the space and time inversions.  More specifically, Equation (29) is a simple 
pseudo-scalar because 4d k    and   2 2k u m

   are simple scalars,  k u
  is a singular scalar, (  

is an odd function and k  and u  are simple and singular vectors, respectively), and    k k 


 is a 
singular pseudo-scalar, according to the definition (27) and Equation (26a). 

2.3 The Mass Determination 

It is easy to construct a simple scalar 

1 1

dV
u u

x x
 

 
   




   

  
 
  

which can, following (Sapogin, 1979, 1980), be interpreted as the particle mass while the nonlinear equation is 
represented as follows:    

     1 1 0
dV

i u u
x x x

  
  
      




      

   
 
                         (30) 

Unfortunately, the authors can only look at this fundamental (in our view) equation.  It appears that any further 
progress in finding a solution to such an equation will be achieved with the help of computers and future symbol 
mathematics programs (of the Maple-16, Mathematica-9 types, etc.). For this purpose Equation (30) should have 
a form with a clear matrix appearance. It is well known that the solution will not depend on a concrete 
representation of matrices 2,  , it is only important that the commutations relations were satisfied. By the 
way, the latter can be checked by direct finding of commutators and anticommutators with apparent matrix 
representation. Let us note that the authors of (Sapogin et al., 1974, 2003, 2005, 2008) had received these results 
long before the epoch of personal computers and symbol math programs. When these things appeared, the first 
thing the authors did was to check the correctness of matrix correlations of the size 32×32! 
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2.4 The Explicit form of Matrices 
 In order to receive a concrete appearance of all the matrices, let us apply the bloc ideas. For this purpose, let us 
write down the basic matrices γ0, γ1, γ2, γ3, gμv, Z, i 

 

 
For these matrices the following standard commutation relations are correct: 

2g         ; , 0,1,2,3   ; 

where  

, , , 0,1,2,3,4      and , , ,g      . 

 

From these basic matrices 10 supplementary bloc matrices can be constructed –λ01, λ02, λ03, λ04, λ12, λ13, λ14, λ23, 

λ24, λ34, which have a clear appearance:  
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Let us define four-velocity 
1 v

( 0, 1, 2, 3) ( ; )u u u u u

 
  . The matrices in the main Equation (30) will be 

defined as: 
0 01 02 03 040 1 2 3u u u          
1 01 12 13 140 0 2 3u u u          
2 02 21 23 240 1 0 3u u u          
3 03 31 32 340 1 2 0u u u          

The equation then will look as follows: 

      0 1 2 3
0 1 2 3

0i m
x x x x

                    
                      (31) 

The mass term of this equation will then be defined by the following correlation: 

2 2

V

dV
m u u

x x
 

 
   




      

  

because   


 ; 04 14 24 34
1     ; 12 13 14 23 24 34       ; 2 1   

The explicit form of 4 matrices   depending on velocity, as well as of numerical matrices 1 2, ,   of the 
size 32×32. Using a good personal computer it is possible to prove the correctness of the correlations in (5) by 
making direct computations of the commutators and anticommutators with the help of symbol mathematics 
programs (Maple-16, Mathematica-9).  

3. Solve Equations 
3.1 A modified Scalar Version of the Integro-Differential Equation 

The attempts to solve equation of the (30), (31) type gave no result. However, (Sapogin et al., 2003, 2005, 2008a) 
an interesting was found for a modified scalar version of the integro-differential Equation (30), which may be 
written down as follows: 

       
0 0 0

, , ,
, , , 2 , , , , , ,

yx z x y z t
x y z t i x y z t x y z t dxdydz

t x y z t


                  

        (32)  

We will seek the solution of this equation in the form 

( , , , ) ( , , )exp( ( ))x y z t F x y z i t kx ky kz      , 

where   
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( , , ) ( ) ( ) ( )F x y z X x Y y Z z  

and ,k  are some constant parameters. Substituting these expressions in (32), we obtain under condition 

3k   following equation w.r.t X, Y, Z: 

2 2 2

0 0 0

'( ) '( ) '( )
2 ( ) ( ) ( )

( ) ( ) ( )

yx zX x Y y Z z
X x dx Y y dy Z z dz

X x Y y Z z
         

Differentiating the left-hand and right-hand sides w.r.t. x, y, z successively, we obtain three equations for 

( ), ( ), ( ) :X x Y y Z z  

'

2 2 2

0 0

'( )
2 ( ) ( ) ( )

( )

y zX x
X x Y y dy Z z dz

X x
 

   
 

  , 

   
'

2 2 2

0 0

'( )
2 ( ) ( ) ( ) ,

( )

x zY y
Y y X x dx Z z dz

Y y
 

   
 

                          (33)  

'

2 2 2

0 0

'( )
2 ( ) ( ) ( ) .

( )

yxZ z
Z z X x dx Y y dy

Z z
     

 
   

Putting 

2

0

( ) ( ) ,
x

U x X x dx   2

0

( ) ( )
y

V y Y y dy   2

0

( ) ( ) ,
z

W z Z z dz   

we obtain the system of ordinary differential equations for  

( ), ( ),... ( ) :X x Y y W z  

2
3 2( ')

'' 2 , '( ) ( ),
X

X X VW U x X x
X

     

  
2

3 2( ')
'' 2 , '( ) ( ),

Y
Y Y UW V y Y y

Y
     

2
3 2( ')

'' 2 , '( ) ( ).
( )

Z
Z Z UV W z Z z

Z z
     

Further, we have put the numerical value of ω, namely, ω = 1/2 (from behind the oscillation of charge) and 
integrated numerically (with the help of Maple-16) this system under following initial conditions (reasonable 
from physical point of view): 

(0) (0) (0) 1, '(0) '(0) '(0) (0) (0) (0) 0.X Y Z X Y Z U V W          

According to obtained solution X(x), Y(y), Z(z) are identical rapidly decreasing functions of following type:  

  ( ) exp( ),pX x x   ( ) exp( ),pY y y   ( ) exp( ),pZ z z   1 2p            (35) 

The plot of X(x) is shown in Figure 1. 
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Figure 1. The plot of X(x) 

 

3.2 Calculation of Dimensionless Electrical Charge and the Value of Fine-Structure Constant 

The basic Equation (32) can be reduced to the scalar equation (Sapogin et al., 1984, 1988, 1991) for the density 
of the space charge of the space charge of the bunch, which represents the particles: 

          0),(
),(),(

),(
),(4),(),(1 2

0

*
* 






















 dssts

t

ts

t

ts
ts

tri

r

tr

t

tr

c

r


        (36) 

Let us solve this equation together with the Poisson equation (Sapogin et al., 1984, 1988, 1991): 

 4divgrad   
We seek the solution in the form 

      krtrFtr  iexp,
_

                              (37) 

We get the following system of equations if the condition 

kc  
is fulfilled: 

_ _
2_

2

0

( ) 8 ( )
( ) 0

rd F r F r
s F s ds

dr h

  , 

_
22 3 _

2

( ) 2 ( ) 1
4 ( ) ( )

2

d r d r c
r F r

r dr hdr

  


     ,                           (38) 

where 

3 _
21

( ) ( )
8

c
r F r

h



  

is the electrical charge density. Let us suppose 

r
x

R
 , 

_

_

( )
( )

(0)

F r
f x

F
 , 

_

(0)F    
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 
_

_ 3
2

2
( )

(0)

h
x r

cR F
   

2_
48 (0)R F

K
h

  

System (38) can be expressed in dimensionless form: 

0)(
)(ln 22

2

2

 xfKx
dx

xfd
                               (39) 

)(
)(2)( 2

2

2

xf
dx

xd

xdx

xd  
 

As long as potential ρ with the accuracy up to an additive constant and its value does not affect the intensity of 
electrical field E grad  , let us choose 0  . Due to the spherical symmetry in the center of the particle, 
the condition 0E   is fulfilled. Solving numerically the Cauchy problem for the system (39), taking the value  
K = 16π = 2·2·4π (where  from dV = 4πr2dr, 2 from integral (36) and 2 from charge oscillation) and the 
initial conditions 

    0 1f  ,  ' 0 0f  ,  0 0  ,  ' 0 0                       (40) 

we obtain the following integrals 

2 2 2

0

( ) 8.5137256105758897351 10QI x f x dx


   ; 2 1
137.9623876QI               (41) 

2 2 3

0

1
( ) 5.6857305 10

2EI x E x dx


                            (42) 

4 2 2

0

( ) 3.2493214 10I x f x dx


                             (43) 

The quantity IQ is a dimensionless electrical charge, which is brought to the following dimensional form: 

24.78709 10QQ cI CGSE    

This value is less than the modern experimental value of the electron’s charge by only 0.3%. This is a fairly 
accurate number for the first theoretical attempt of the charge calculation. The plot of f(x) is shown in Figure 1. 

Thus it is not unusual to bring out the “corrections” of the J. Schwinger type to the integral (41) 

2 3
2

2
8.5424692 10

8 64
Q Q

e Q

I I
I I

 
     , 

which corresponds to the value of charge e = 4.803 2514· 1010  CGSE and the value of fine-structure constant 
 1/137.03552  . Calculation spectrum masses some elementary particles see (Sapogin et al., 2008a, 2008b, 

2010). 

The quantization of the electrical charge and masses seems to be the consequence of the balance between the 
dispersion and nonlinearity, which determines stable solutions. 

The found density distribution for the particle’s electrical charge allows us to determine the electrical form factor 
for the same particle 

            ( ) ( )exp
V

F q x iqx dV                               (44) 

We regret that we have not succeeded in finding an analytical solution of Equation (39), but we are able to give a 
decent approximation. Let us look for a solution of Equation (39) in the form 

( ) sech ( )f x R x                                   (45) 
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Substituting Equation (45) into Equation (39) and taking into account that for small R we have  

RR 2sinh
2

1

 
we obtain 

     '' 216RR x ; 28

3
R x

                              (46) 

28
( ) sech

3
f x x

                                  (47) 

It is interesting to note that if the particle’s 4-velocity is assumed to be zero at matrix Λ, then system (30) will 
reduce to eight similar Dirac equations. 

4. Problems 
4.1 The Dirac Equation 

In our view, although the Dirac equation describes the hydrogen atom spectrum absolutely correctly, it is not 
properly a fundamental equation. It has two weak points: the correct magnitude of the velocity operator’s proper 
value is absent. It is known that in any problem of this type the proper value of the velocity operator is always 
equal to the velocity of light! In fact, Russian physicist and mathematician V.A.Fok regarded this as an essential 
defect of the Dirac theory. 

The equations of the Unitary Quantum Theory we are proposing are more correct and fundamental. For this 
reason, a transition from correct fundamental equations to the incompletely accurate Dirac equation needs such a 
strange requirement as 

0u   

However, this requirement is absolutely unsatisfactory both from the physical and the mathematical points of 
view. Four-velocity has 4 components, of which three are usual components of the particle velocity along three 
axes, and they really can tend to zero. But the same cannot be done with the fourth component. 

4.2 The Theories of Aether 

In the second paragraph of the preface of the book A History of the Theories of Aether and Electricity, by Sir 
Edmund T. Whittaker (Edinburgh, Scotland, April, 1951) was written the following: “A word might be said 
about the title ‘Aether and Electricity’. As everyone knows, the aether played a great part in the physics of the 
nineteenth century; but in the first decade of the twentieth, chiefly as a result of the failure of attempts to observe 
the Earth’s motion relative to the aether, and the acceptance of the principle that such attempts must always fail, 
the word ‘aether’ fell out of favour, and it became customary to refer to the interplanetary spaces as ‘vacuous’; 
the vacuum being conceived as mere emptiness, having no properties except that of propagating electromagnetic 
waves. But with the development of quantum electrodynamics, the vacuum has come to be regarded as the seat 
of ‘zero-point’ oscillations of the electromagnetic field, of the ‘zero-point’ fluctuations of electric charge and 
current, and of a ‘polarization’ corresponding to a dielectric constant different from unity. It seems absurd to 
retain the name ‘vacuum’ for an entity so rich in physical properties, and the historical word ‘aether’ may be 
fitly retained.” Of course, now aether is not old aether of the nineteenth century. 

The question is that the main relativistic relation between energy, impulse, and mass   
2 2 2E P m                                     (48) 

has been still beyond any doubt.  In particular, all of the previous equations are based on relativistic invariance.  
Nevertheless, we shall ask ourselves once again about what is happening with that relation at the exact moment 
when the wave packet disappears being spread over the space.  At that moment the particle does not exist as a 
local formation. This means that in the local sense there is no mass, local impulse, or energy. The particle in that 
case, within sufficiently small period of time, is essentially non-existent, for it does not interact with anything. 
Perhaps this is why the relation (48) is average and its use at the wavelength level is equal or less than the De 
Broglie wavelength, which is just illegal.  The direct experimental check of that relation at small distances and 
short intervals is hardly possible today.  If the relation (48) is declined, then it may result in an additional 
conservation of energy and impulse refusal; but, as we know, according to the Standard Quantum Theory, that 
relation may be broken within the limits of uncertainty relation.  
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4.3 The Lorenz’s Transformations 

On the other hand, the Lorenz’s transformations have appeared when the transformation properties of Maxwell’s 
equations were analyzing. However electromagnetic waves derived from solutions of Maxwell’s equations move 
all in vacuum with the same velocity, i.e. are not subjected to dispersion and do not possess relativistic 
invariance. Our partial waves (may be it is gravitation waves?), which form wave packet identified with a 
particle, possess always the linear dispersion. Under such circumstances, it would be quite freely for authors to 
spread the requirement of relativistic invariance to partial waves. Such requirement has sense in respect only to 
wave packet’s envelope, which appears if we observe a moving wave packet and his disappearance and 
reappearance. May be the origin of relativistic invariance would be connected in future with the fact that an 
envelope remains fixed in all inertial reference frames; only the wave’s length is changed. 

It’s quite complicated (Sapogin et al., 2012a, 2012b, 2013). The special relativity–is in fact Lorentz 
transformations (1904) derived by Vogt (1887) in the century before last. These transformations followed from 
the properties of Maxwell equations which are also proposed in the nineteenth century (1873). One of these 
equations connecting electrostatic field divergence and electric charge (Gauss’ law of flux), in fact is just another 
mathematical notation of Coulomb’s law for point charges. 

But today anybody knows that Coulomb’s law is valid for fixed point charges only. If charges are frequently 
moving Coulomb’s law is not performed. Besides anybody knows that lasers beams are scattered in vacuum one 
over another, which is absolutely impossible in Maxwell equations. That means that Maxwell equations are 
approximate - and for the moving point charges experimental results essentially differs from the estimated ones 
in the case charges areas are overlapping. 

Few people think about the shocking nonsense of presenting in any course of physics of point charge electric 
field in the form of a certain “sun” with field lines symmetrically coming from the point. But electric field – is a 
vector, and what for is it directed? The total sum of such vectors is null, isn’t it?       

There are no attempts to talk about, but such idealization is not correct. We should note that Sir Isaak Newton 
did not used term of a point charge at all, but it’s ridiculous to think that such simple idea had not come to him! 
As for Einstein, he considered “electron is a stranger in electrodynamics”. Maxwell equations are not ultimate 
truth and so we should forget, disavow the common statement about relativist invariance requirement being 
obligatory “permission” for any future theory. 

To reassure severe critics we should note that UQT is relativistically invariant, it allows to obtain correct 
correlation between an energy and impulse, mass increases with a rate, as for relativistic invariance just follow of 
the fact that the envelope of moving packet is quiet in any (including non-inertial) reference systems. To be 
honest we should note that subwaves the particles consist of are relativistically abnormal, at the same time 
envelope wave function following from their movement confirms terms of Lorentz transformations.   

4.4 The Spinor Quantum Electrodynamics 

The success of Maxwell equations in description of the prior-quantum view of world was very impressing. Its 
correlation of the classical mechanics in forms of requirement to correspond Lorentz transformations was 
perfectly confirmed by the experiments that all these had resulted in unreasoned statement of Maxwell equations 
being an ultimate truth… Other reasons for this were later very carefully investigated by a disciple of one of the 
authors (L. S.), Professor Ratis Yu. L. (S. Korolev Samara State Aero-Space University), who has formulated the 
modern spinor quantum electrodynamics from the UQT point of view: 

1). Maxwell equations contain constant c, which is interpreted as phase velocity of a plane electromagnetic wave 
in the vacuum.   

2). Michelson and Morley have never measured the dependence of the velocity of a plane electromagnetic wave 
in the vacuum on the reference system velocity as soon plane waves were mathematical abstraction and it was 
impossible to analyze their properties in the laboratory experiment in principle.  

3). Electromagnetic waves cannot exist in vacuum by definition. A spatial domain where an electromagnetic 
wave is spreading – is no longer a vacuum. Once electromagnetic field arises in some spatial region at the same 
moment such domain acquires new characteristic – it became a material media. And such media possesses 
special material attributes including power and impulse.     

4). Since electromagnetic wave while coming through the abstract vacuum (the mathematical vacuum) 
transforms it in a material media (physical vacuum) it will interact with this media.   
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5). The result of the electromagnetic wave and physical vacuum interaction are compact wave packets, called 
photons.      

6). The group velocity of the wave packet (photon) spreading in the media with the normal dispersion is always 
less its phase velocity.     

All abovementioned allows making unambiguous conclusion: the main difficulties of the modern relativistic 
quantum theory of the field arise from deeply fallacious presuppositions in its base. The reason for this tragic 
global  error  was a tripe substitution of ideas–velocity of electromagnetic wave packets ‘c’ being transformed 
in numerous experiments physics have construed as constant ‘c’ appearing in Maxwell equations and Lorentz 
transformations. Such blind admiration of Maxwell and Einstein geniuses (authors in no case do not doubt in the 
genius of these persons) had led XX century physics up a blind alley. The way out was in the necessity of 
revision of the entire fundamental postulates underlying the modern physics. Exactly that was done by UUQFT 
(Sapogin, 2010b, 2011).      

4.5 The Velocity of Electromagnetic Waves 

Some time ago CERN has conducted repeated experiments of the neutrino velocity measurement that appeared 
to be higher than velocity of the light. For UUQFT they were like a balm into the wounds. In fact the movements 
in excess of the light velocity were discovered earlier by numerous groups of researches. The most interesting 
were experiments of (Wang, 2000; Princeton, USA), they had disclosed velocities 310 times higher than the light. 
Nearly everybody disbelieved it. And now the neutrino movements exceeding the velocity of the light were 
disclosed in CERN. The importance of these experiments for UUQFT is settled in the article (Sapogin, 2011) 
where at the page 69 it is written that “this should be considered as direct experimental proof of UUQFT 
principle”. 

As soon relativistic invariance underlies every of the numerous quantum theories of the field, it leaves a devilish 
imprint at everything. Nevertheless relativistic ratio between energy and impulse although being absolutely 
correct in fact are not obligatory follow from relativistic invariance only and can result from another 
mathematical reasons that will be discovered in future.  

4.6 The Standard Model and a Higgs Boson 

Nowadays Standard Model (SM) combines the most elegant mathematical miracles of researches which hands 
were tied with relativistic strait-jacket and it not so bad describes these experimental data. Amazing that it was 
possible to think it out at all.  

Nowadays to confirm SM one should find a Higgs boson and for this purpose the governments of some countries 
assigned essential sums for the construction of Large Hadron Collider (LHC). For entire SM the interaction with 
Higgs field is extremely important, as soon without such a field other particles just will not have mass at all, and 
that till lead into the theory destruction.   

To start with we should note that the Higgs field is material and can be identified with media (aether) as it was in 
former centuries. But SM authors as well as modern physics have carefully forgotten about it. We would not like 
to raise here once again the old discussion about it.  It’s a quite complicated problem and let us leaves it to the 
next generation.   

But another problem of SM has never mentioned before: in the interaction with Higgs field any particle obtains 
mass. As for Higgs boson itself, it is totally falling out of this universal for every particle mechanism of mass 
generation! And that is not a mere trifle, such “mismatching” being fundamental fraught with certain 
consequences for SM.      

After Higgs boson discovery nothing valuable for the world will happen except an immense banquet. Of course 
boson will justify the waste of tens billions of Euros… But even now some opinions in CERN are expressed that 
probably boson non-disclosure will reveal a series of new breath-taking prospects… and where were these voices 
before construction, we wonder? But that’s not the point! If this elusive particle were the only weakness of SM! 
To our regret today this theory cannot compute correctly the masses of elementary particles including the mass 
of Higgs boson. More worse, that SM contains from 20 to 60 adjusting–arbitrary! -parameters (there are different 
versions of SM). SM does not have theoretically proved algorithm for spectrum mass computation – and no 
ideas how to do it!  

All these bear strong resemblance to the situation with Ptolemaic model of Solar system before appearance of 
Kepler’s laws and Newton’s mechanics. This earth-centered model of the planets movement in Solar system at 
the moment of appearance had required introduction of 40 epicycles, specially selected for the coordination of 
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theoretical forecasts and observations. Its description of planets positions was quite good; but later to increase 
the forecasts accuracy it had required another 40 additional epicycles…   

Good mathematicians know that epicycles are in fact analogues of Fourier coefficients in moment decomposition 
in accordance with Kepler’s laws; so by adding epicycles the accuracy of the Ptolemaic model can be increased 
too. However that does not mean that the Ptolemaic model is adequately describing the reality. Quite the 
contrary… 

The Unitary Quantum Theory allowed computing the mass spectrum of elementary particles without any 
adjusting parameters. By the way computed spectrum (Sapogin et al., 2008ab, 2010) has particle with mass 
131.51711 GeV (L=2, m=2). Once desired it can be called Higgs boson, it lies within declared by the 
CERN+Tevatron mass interval 125-140 GeV expected to contain Higgs boson. CERN promises to obtain more 
precise mass value by December 2012. 

5. Conclusion 

It seems that if UQT were correctly describing the world properties the radical transformation of the civilization 
would be possible. In conclusion we should express our astonishment that UQT is incomprehensible for any 
thinking person, it’s a mystery to us. We are concluding by reminding of the prophetical words of the famous US 
science-fiction author Arthur Clarke: “Something that is theoretically possible will be achieved practically 
independent of technical difficulties. It’s enough to desire it.” (back translation)- Profiles of the Future, 1963. 

We would like to add the amazing phrase of A. de Saint-Exupéry: “The truth is not something that could be 
proved, but something that makes all things easy and clear” (back translation). 
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