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Abstract 

The paper is concerned with analysis and solution of the static problem of the General Theory of Relativity for 
an orthotropic solid sphere and the surrounding space. It is shown that, in contrast to liquid and isotropic elastic 
spherical solids, the singularity does not appear at the center of the sphere whose radius is reduced to the 
gravitational radius.  
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1. Introduction 

The spherically symmetric static problem of the General Theory of Relativity (GTR) was solved by 
Schwarzschild in 1916 just after the theory was developed. The solution for the empty space (Schwarzschild, 
1916a) surrounding the sphere with radius R shows that the radial space metric coefficient becomes singular if 
the sphere radius approaches the gravitational radius rg. However, the analysis of this solution (Synger, 1960) 
allows us to conclude that the surface with the radius rg is located inside the sphere, and the singularity does not 
exist in the external space. The solution for inside space simulated with a perfect incompressible liquid 
(Schwarzschild, 1916b) becomes singular at the sphere center if R approaches rg, and a natural question arises as 
to whether this singularity is actual (Hawking & Penrose, 1970) or it is a formal result having no physical 
meaning (Fock, 1959; Logunov & Mestvirishvili, 1985). It is also can be supposed that the singularity appears in 
solution for the incompressible liquid only and can disappear for a more realistic material model allowing for 
stresses and strains induced by the gravitation. Two main problems arise in connection with this question. First, 
for the sphere material which is more general than a perfect incompressible liquid, the GTR equations are not 
complete and must be supplemented with the corresponding material constitutive equations (Feynman, Morinigo 
& Wagner, 1995). Second, only numerical solutions are possible for a complete set of equations (in case such a 
set is obtained), but such solutions cannot be used to identify singularities because they do not converge not only 
for singular problems, but also if the solution of the boundary problem does not exist. Numerical solutions which 
do not converge at the sphere center have been constructed by Vasiliev and Fedorov (2012) for compressible 
liquid and elastic solid spheres.  

In the present paper, the GTR problem for the orthotropic sphere is studied. As follows from the Theory of 
Elasticity, singularity does not appear at the center of the orthotropic sphere under some conditions imposed on 
the material elastic constants. Thus, the singularity at the sphere center can be eliminated, whereas, in the 
vicinity of the outer surface, the sphere material can be simulated with incompressible liquid and the analytical 
solution for the incompressible can be used to identify the possible singularity. 

2. Governing Equations 

Consider a spherical solid with radius R surrounded by the infinite empty space. In accordance with the classical 
Schwarzschild solution (Synge, 1960), the line element in spherical coordinates r,  ,   is taken as 

2222222 )sin( hdtddrgdrds                         (1) 

where g(r) and h(r) are the coefficients of the metric tensor of semi-Riemannian space induced by gravitation. 
For the external (r R) and internal (0 rR) spaces the following conservation equation must be satisfied 
(Synge, 1960): 
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Here, (...)' d(...) / dr  and i
jT  are the components of the energy tensor which for the static problem in 

spherical coordinates are expressed in terms of the radial, r , and the circumferential,  , stresses induced by 
the gravitation inside of the solid sphere with constant density  , i.e., 

1
1 rT  , 2 3

2 3T T   , 4 2
4T c                           (3) 

According to GTR, Equation (2) is identically satisfied if the components of the energy tensor i
jT  are expressed 

in terms of the components of the Einstein tensor i
jG  as 

1 1
1 1 2 2

1 h' 1 1
T G

g rh r r
       

 
                             (4) 
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                 (5) 
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  

     
 

                            (6) 

in which   

48 / c                                      (7) 

and   is the gravitation constant. Because substitution of Equations (4)-(6) identically satisfies Equation (2), 
only three of four Equations (2) and (4)-(6) are mutually independent. The simplest set of equations which is 
used further for analysis includes Equations (2), (4) and (6), whereas Equation (5) is satisfied identically (Synge, 
1960). Using Equations (3), we can present the final set of equations in the following form: 

' 2
r r r

2 h'
( ) ( c ) 0

r 2h                                    (8) 

r 2

1 h' 1 1

rg h r r
      

 
                              (9) 

'
2

2

1 r
c r

gr
  

  
 

                                 (10) 

Consider the solution of these equations for the external and internal spaces. 

3. External Space 

The external space ( r R ) is empty, so that r 0    and 0  . In this case, Equation (8) is satisfied 

identically, whereas Equations (9) and (10) reduce to 

'
e

e

h 1
( g 1)

h r
  , 

e

r
r ' 0

g

 
  

 
                            (11) 

Subscript “e” corresponds to the external space. Integration of Equations (11) yields 

e
1

1
g

1 C / r



, e 2 1h C (1 C / r )                            (12) 

This result corresponds to the well known Schwarzschild solution. Determine the integration constants 1C  and 

2C . At an infinite distance from the sphere, i.e., at r  , Equations (12) must reduce to the solution of the 

classical gravitation theory (Landau & Lifshitz, 1962 ), i.e., to 
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0 2
eg 1 2 f / c  0

eh 1                              (13) 

where f m / r   is Newtonian gravitation potential in which m is the sphere mass. Introduce the so-called 
gravitational radius 

2
gr 2m / c                                  (14) 

Then, the conditions 0
e eg ( r ) g   and 0

e eh ( r ) h   yield 1 gC r  , 2C 1  and Equations (12)  
become 

e
g

1
g

1 r / r


 , e gh 1 r / r                           (15) 

For the Euclidean space, gr 0  and e eg h 1  .  

4. Geometry of Internal Space 

For the spherical solid,  = constant and integration of Equation (10) results in the following expression: 

i
2 2 3

1
g

C
1 c r

3 r

 


 

                                  (16) 

where subscript “i” corresponds to the internal space. Because ig 1  at the sphere center r 0 , we have 

3C 0  and Equation (16) becomes 

i 2 2

1
g

1 r



,

g2 2
2

4 r8
c

3 3m3c

                               (17) 

in which Equations (7) and (14) are used to transform parameter  . 

5. Boundary Conditions 

For the line element in Equation (1), the area of the surface r = constant is 24 r , but the distance of this surface 
from the sphere center 0r  is not equal to r. For the internal space, we have using Equation (17) 

r r
1

i i
2 2

0 0

dr 1
r g dr sin ( r )

1 r



  

                           (18) 

For the external space, in accordance with Equation (15), we get 

r r

e i e i
gR R
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r r ( r R ) g dr r ( r R )

1 r / r
     

   

 
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gg1
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g
g

r
r r( r r )r1 2sin R r( r r ) R( R r ) ln
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2





  

     
  

                (19) 

For r R , Equations (18) and (19) yield i er r  which looks natural because the sphere outer surface is a 
physical object. The metric coefficients of the internal and the external spaces must be continuous at i er r  or 
at r R , i.e., i eg ( R ) g ( R ) . Using Equations (15) and (17), we have 

2 3 3
g 2

8
r R R

3c

                                   (20) 

Recall that gr  is specified by Equation (14). Matching Equation (14) with Equation (20), we can find the 
sphere mass, i.e., 
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34
m R

3
                                     (21) 

This is the mass of the sphere in Euclidean space. However, according to CTR, the space inside the sphere is 
semi-Riemannian, the metric coefficient 

ig  is specified by Equation (17) and the sphere mass must be 

2 2 R
2 3 1

i g g
g g0 0 0

2 1
m d sin d r g dr R sin r 1 r

r r

 
     

 
    
 
 

                (22) 

where  

g gr r / R                                    (23) 

To analyze Equation (22), decompose its right-hand part into the power series, i.e., 

3 2
g g

4 3 9
m R 1 r r ...

3 10 56
       

 
 

This result coincides with Equation (21) only for gr 0 , i.e., only for Euclidean space. Recall that Equation (21) 
follows from the boundary condition for the metric tensor which must not be violated. Thus, for the line 
elements in Equation (1) the sphere mass corresponds to the Euclidean space though the metric coefficients of 
the space correspond to the Riemannian space. This allows us to suppose that in GTR these coefficients describe 
some other physical properties of space rather than the space geometry.  

6. Interpretation of Riemannian Space 

As known (Rashevsky, 1967), Riemannian space with Rn  dimensions can be embedded into Euclidean space 
with E R Rn n ( n 1) / 2   dimensions. For two-dimensional Riemannian space ( Rn 2 ), i.e. for an actual 
surface, we have En 3  which corresponds to the actual three-dimensional Euclidean space. However, for 

Rn 3 , we get En 6 , i.e. six-dimensional Euclidean space which has no physical interpretation. To 
demonstrate the idea of the proposed interpretation of the three dimensional Riemannian space (Vasiliev, 1989), 
consider a two-dimensional Euclidean space, i.e., a disk inside the circle with radius r R  (Figure 1(a)) with 
area 2R  and the metric coefficients 0

rg 1 , 0 2g r  and a surface of revolution in a three-dimensional 
Euclidean space (Figure 1(b)) with the metric coefficients 2

rg 1 ( z')  , 2g r  .  

 

 

 (a) (b) 
Figure 1. To the interpretation of Riemannian space 

 
If we move point A in Figure 1(b) to the circle center O “compressing” the surface in the radial direction, the 
area of the resulting flat disk becomes equal to 2R , but this disk exists now in non–homogeneous and 
anisotropic two-dimensional Euclidean space. Introducing the space “density” in the radial and the 
circumferential directions as 

0 2
r r rg / g 1 ( z')    , 0g / g 1                            (24) 

we can treat the Riemannian geometry as the mathematical model of non-homogeneous and anisotropic 
Euclidean space. Note that having Equations (9) and (10) which link the stress and the metric tensors, we can 
find the space “densities” as functions of stresses and, concentrating the material in the areas where the 
“densities” are high, arrive at some optimal material distribution corresponding to the acting stresses. 
Application of this approach to structural optimization is presented by Vasiliev and Fedorov (2006). 
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In accordance with the foregoing interpretation of Riemannian space, gravitation causes not the space 
“curvature” which can be hardly imagined, but affects the “density” of the Euclidean space. The proposed 
interpretation does not change the physical results obtained in GTR. For example, the curvature of the light beam 
in the vicinity of a massive solid is induced in Newton theory by gravitational force, in GTR the beam follows 
the geodesic line of the space curved by the solid, whereas within the proposed interpretation, the beam 
propagates in space like in a transparent media with variable refraction coefficient. 

7. Singular Solutions 

As follows from Equations (15), the metric coefficient eg  (or the “density”) of the external space can become 
singular if the radial coordinate r  reaches the gravitational radius gr . Hence, a natural question arises as to 
whether r  can be equal to gr  in the external space. In the Euclidean space (see Section 6), the mass of the 
sphere with an arbitrary density ( r )  is 

R
2

0

m 4 ( r )r dr    

Expressing ρ from Equation (10) which is valid for any function ( r ) , we get 

R

2 2
i R0

4 r 4 R 1
m r ' dr 1

g gc c

 
 

   
      

    

where R e ig g ( R ) g ( R ).   Substituting this result in Equation (14) for gr  and using Equation (7) for χ, we 
arrive at the following expression for rg:  

g
R

1
r R 1

g

 
  

 
                                 (25) 

Applying Equation (15) from which it follows that e Rg ( R ) g  is higher than unity, we can conclude from 
Equation (25) that gr R , i.e., that the surface with radius gr  is located inside the sphere. However, Equation 
(15) for eg  is valid outside the sphere and thus, cannot be singular. Note that Equation (25) is valid irrespective 
of the sphere structure and material. 

As known, the singularity can appear at the sphere center r 0 . Such singularity occurs for the pressure in the 
liquid sphere if R 9 / 8R  (Weinberg, 1972) and in elastic sphere if R  approaches gr  (Vasiliev & Fedorov, 
2012). Consider the orthotropic sphere for which no singularity can exist at the sphere center under some 
conditions imposed on the elastic properties of the sphere material. 

8. Classical Solution for an Orthotropic Sphere 

Within the framework of Newton gravitation theory, the set of equations describing the equilibrium of a 
spherically orthotropic solid under the action of gravitation forces includes the equilibrium equation (Love, 
1927) 

' 2
r rr 2( ) kr 0      , 

2
g2

3

r c4
k

3 2R

                          (26) 

constitutive equations 

rr
r

r

2

E E





   , r
r

r

1

E E


 


                             (27) 

and strain-displacement equations 

r u'  , u / r                                 (28) 

in which 
rE  is the radial elastic modulus and E  is the circumferential modulus of the material stiffness,   

are Poisson’s ratios such that r r rE E    , and u( r )  is the radial displacement. Eliminating u  from 
Equations (28), we arrive at the following compatibility equation which links the radial, r , and the 
circumferential,  , strains: 
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r( r )'                                     (29) 

To solve the problem, satisfy the equilibrium equation, Equation (26), introducing the stress function F  as 

r 2

F

r
  , 21 F '

kr
2 r
   
 

                            (30) 

Substituting the strains from Equations (27) in Equation (29) and expressing the stresses in terms of the stress 
function with the aid of Equations (30), we obtain the following governing equation for the stress function: 

4
2 '' 2

r
kr

r F m F [ 3(1 ) 2 ]
1  


   


, 2 r

r

2E (1 )
m

E (1 )
 







                    (31) 

The solution of this equation which satisfies the regularity condition at the sphere center r 0  is 

n 4F( r ) Cr kBr  ,  21
n 1 1 4m

2
   , r

2

3(1 ) 2
B

(12 s )(1 )
 


 


 
              (32) 

On the sphere surface, we have the boundary condition r ( R ) 0  . Determining the integration constant in 
Equation (32) from this condition, we arrive at the following final expressions for the stresses: 

 2 n 2 2
r kBR r r    ,  2 n 2 2 21

kR B nr 4r r
2

                       (33) 

where   

r r / R                                     (34) 
The orthotropic properties of the sphere material are specified by parameters m  and n  in Equations (31) and 
(32). If the radial modulus rE  is higher than the circumferential modulus E , i.e., the sphere is reinforced in 
the radial direction, we have 2m 2 , n 2  and the stresses in Equations (33) become singular at the sphere 
center. If rE E , i.e., the sphere is reinforced with concentric shells, we have 2m 2 , n 2  and the 
stresses in Equations (33) become zero at the sphere center. Thus, the classical solution shows that no singularity 
can appear at the center of an orthotropic sphere if rE E . 

9. GTR Solution for an Orthotropic Sphere 

The metric coefficient of the internal space is specified by Equations (17) and (20) which yield 

i 2 3
g

1
g

1 r r / R



                                   (35) 

Substituting this result in Equation (9) and taking into account Equations (7), (14) and (21) for  , gr  and m , 
we get 

'
gi r

3 2 2
i g

r rh 3
1

h R r r c




 
  

  
                             (36) 

The first governing equation of the problem under study follows from the conservation equation, Equation (8), if 
we substitute '

i ih / h  from Equation (36), i.e., 

2 2
g' r r

r r 3 2 2 2
g

c r r 3
r 2( ) 1 1 0

2( R r r ) c c


    
 

  
       

   
               (37) 

Compare this equation with Equation (26) of the classical gravitation theory. For this purpose, perform 
linearization of Equation (37) neglecting the terms 2

r / c   in comparison with unity. Then, Equation (37) 
reduces to 

2 2
g'

r r 3 2
g

c r r
r 2( ) 0

2( R r r )



     


                        (38) 

If we further neglect 2
gr r  in comparison with 3R , we arrive at Equation (26) of the classical gravitation theory. 
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The last term in Equation (38) corresponds to the body force in Equation (26) and becomes infinitely high at the 
sphere surface r R  if gR r . This property of the equation causes possible specific features of its solution 
discussed further in Section 10.  

Return to Equation (37) which includes two unknown stresses r  and  . In the classical gravitation theory 
(Section 8), this equation is supplemented with the compatibility equation, Equation (29). To construct the 
analogous equation for GTR, apply the invariant condition of the Einstein tensor in Equations (4)-(6) ( Vasiliev 
& Fedorov, 2006), assuming that this tensor identically satisfies the conservation equation , Equation (37), not 
only for the initial space, but for the deformed space as well. Introduce the metric tensor of the deformed space 
as           

2
i i r i rg g (1 ) g (1 2 )      , r r(1 )    

Here, index “ ” corresponds to the deformed space and the strains r  and   are assumed to be small in 
comparison with unity. As shown by Vasiliev & Fedorov (2006, 2012), for the problem under study, the Einstein 
tensor satisfies the conservation equation for both initial and deformed states if 1 1

1 i 1 iG ( g ,r ) G ( g ,r )
  , here 1

1G  
is specified by Equation (4). As a result, we arrive at the following equation: 

' '
' i i

i r
t i

rh rh
r 1 g 1

2h h   
   
         

   
                         (39) 

For ig 1  and ih 1  this equation reduces to Equation (29) of the theory of elasticity. Substituting ig  and 
'
i ih / h  from Equations (35) and (36) in Equation (39), we get 

2 2
g ' r r

r r r3 2 2 2
g

r r 3r
( r )' 1 3

2R r r c c
  
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 
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    
                 (40) 

If we substitute the strains expressed in terms of stresses with the aid of Equations (27) in Equation (40), we can 
obtain the second equation which, being added to Equation (37), provides the set of two equations for the 
stresses r  and  . The final form of this set is 

rs' u ( r )(1 3s )(1 s ) 0                               (41) 

' '
r r r r

' '
r r r r r r
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where 
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and gr , r  are specified by Equations (23) and (34). The obtained equations must be integrated under the 
following boundary conditions: r ( r 0 ) ( r 0 )     and r ( r R ) 0    which yield 

u( r 0 ) 0  , s( r 1) 0                                 (43) 

As an example, consider an orthotropic sphere with zero Poisson’s ratios, i.e., take r r 0      . Then, 
Equation (42) is simplified as 

' ' 2r
ru u 2rs 2( k 1)s 2 ( r ) 2( k 1)s u (1 3s )[ u' 2s' 6ks )

2
             

 
         (44) 

and includes only one material parameter rk E / E . Numerical (MAPLE-7) solutions of Equations (41) and 
(44) under boundary conditions in Equations (43) for gr 0.1  and three values of parameter 
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k (0.9 , 1.0 , 1.5 )  are presented in Figure 2.  

 

    

 (a) (b) 
Figure 2. Dependences of the normalized radial (a) and circumferential (b) stresses 2c    on the radial 

coordinate for 
gr 0.1  and various values of parameter k 

 
For comparison, the dashed lines demonstrate the classical solution in Equations (33) for an isotropic sphere with 
zero Poisson’s ratio which takes the form 

 g 2
r

3r
1 r

20
    ,  g 2r

3 r
20                          (45) 

As can be seen, for k 0.9  the stresses are singular at the sphere center, for 1k  the stresses are finite and 
rather close to the classical solution, whereas for k 1.5 , the stresses are zero at the sphere center. For the 
sphere whose radius R  is close to the gravitational radius gr , i.e., for gr 0.99 , the stresses are shown in 
Figure 3 for k 1.5  (solid lines) and for 1k  (dashed lines). Note that the classical solution in Equations (45) 
for the sphere with gr 0.99  gives the stresses that are by an order of magnitude lower than the stresses 
presented in Figure 3. For gr 1 , the numerical procedure does not converge. 

 

 
Figure 3. Dependences of the normalized stresses 2c    on the radial coordinate for k 1.5  () and for 

1k  (  ) and gr 0.99  
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10. GTR Solution for an Orthotropic Sphere Covered with Liquid 

As follows from Figure 3, at the center of the orthotropic sphere with k 1.5  and gr 0.99  the stresses are 
zero. On the sphere surface r 1 , the radial stress is zero, whereas the circumferential stress is extremely high 
(recall that 2c   ). Real materials cannot take such high stress and we can expect that while R  reduces to 

gr , the surface layer of the sphere fails under increasing stress. To evaluate the conditions under which such 
failure occurs, we apply the stress intensity which for the problem under study has the following form (Jones, 
2009): 

i r                                           (46) 

The material fails when i  reaches some ultimate value established experimentally. Note that if r   , and 
the failure does not occur. The condition r p     is satisfied for the liquid which does not fail under any 
pressure p . For a liquid sphere, the pressure can be found from Equations (37) which is simplified as  

g

2
g

r r
p' (1 3 p )(1 p ) 0

2(1 r r )
   


                             (47) 

and has the following solution: 

2
g

2
g

1 r r C
p( r )

1 r r 3C

 
 

 
                                  (48) 

in which 2p' p / c  and the integration constant C  can be found from the boundary condition on the 
sphere surface, i.e., 

p( r 1) 0                                         (49) 

The resulting expression for the pressure is (Synge, 1960) 

2
g g

2
g g

1 r r 1 r
p( r )

1 r r 3 1 r

  
 

  
                              (50) 

The idea of the proposed solution is demonstrated in Figure 4 which corresponds to gr 0.1  and k 1.5 .  

 

 

Figure 4. Dependences of the normalized stresses and pressure on the radial coordinate 

 stresses in solid sphere 
   pressure in liquid stress intensity in solid sphere 
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Using the stresses presented in Figure 2, we can plot the stress intensity i  in Equation (46) as a function of  
r  (the dotted line in Figure 4). Assume that i  reaches the ultimate value at some radius  sr r  ( sr 0.5  
in Figure 4). Then, the material of the external part of the sphere s( r r 1)   can be simulated with liquid. The 
pressure in liquid is specified by Equation (50) which allows us to find the pressure s sp ( r r ) . The internal 
part of the sphere ( s0 r r  ) is elastic and orthotropic. The stresses can be found by integration of Equations 
(41) and (44) under the following boundary conditions: u( r 0 ) 0   and s ss( r r ) p  . 

Now return to the case gr 1 . For the liquid sphere, the pressure specified by Equation (50) becomes infinitely 
high at the sphere center if the sphere radius R  is reduced to g9 / 8r  (Weinberg, 1972). However, for the 
laminated sphere under consideration, the central part is a solid orthotropic sphere with k 1.5  (Figure 3) and 
there is no singularity at the sphere center. For a solid orthotropic or isotropic sphere, the numerical solution 
gives high circumferential stress on the sphere surface r R  and does not converge if gR r  which means 
that either the solution is singular at r R  or that the solution does not exist for gR r . Unfortunately, the 
numerical solution does not allow us to identify which of these two cases takes place. However, for a sphere with 
a liquid surface layer, we have the analytical solution, Equation (48), which can be used to clear out the situation. 
Taking gr 1  and r 1  in Equation (48), we get p 1 / 3   which has no physical meaning, first, because 
the pressure cannot be negative and, second, because the boundary condition in Equation (49) cannot be satisfied. 
Thus, the GTR problem has no solution for the sphere with radius which is equal to the gravitational radius. The 
reason for this is associated with Equation (38) in which the last term is analogous to the body gravitation force 
in Equation (26) of the classical gravitation theory. This force (or the space “density” in Equations (24)) becomes 
infinitely high on the sphere surface r R  if gR r . It seems evident that in this case the boundary condition 
in Equation (49) cannot be satisfied, because the infinitely high force acting on the surface r R  cannot be 
accompanied with zero pressure acting on this surface. 

11. Conclusion 

The foregoing results allow us to arrive at the following conclusions. 

As follows from Equation (25) which links the gravitational radius and the value of the metric coefficient on the 
sphere surface and is valid for any model of the sphere material, the surface corresponding to the gravitational 
radius is always located inside the sphere. Thus, for the metric coefficient of the external space specified by 
Equation (15), r cannot become equal to rg and the singularity of the metric coefficient in the external space does 
not exist irrespective of the structure and the material of the spherical solid. 

The condition according to which the GTR solution for the external space must degenerate to the classical 
solution at a distance from the sphere surface actually means that the geometry of the space inside the sphere is 
Euclidean, and that Riemannian geometry of the inside space can be treated as a mathematical model of a 
non-homogeneous and anisotropic Euclidean space. 

As shown in Sections 8 and 9, both classical and GTR solutions for the orthotropic sphere whose circumferential 
modulus is higher than the radial modulus, in contrast to the solutions for the incompressible liquid and the 
isotropic elastic solid spheres, do not demonstrate the singularity at the sphere center if the sphere radius reduces 
to the gravitational radius. 

It is shown that for a specially constructed sphere which consists of an internal orthotropic elastic solid covered 
with incompressible liquid and whose external radius is equal to the gravitational radius, the GTR solution does 
not exist. 
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