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Abstract 

For applications regarding transition prediction, wing design and control of boundary layers, the fundamental 
understanding of disturbance growth in the flat plate boundary layer is an important issue. In the present work 
we investigate the stability of boundary layer in Poiseuille flow. We normalize pressure and time by inertial and 
viscous effects. The disturbances are taken to be periodic in the spanwise direction and time. We present a set of 
linear governing equations for the parabolic evolution of wavelike disturbances. Then, we derive the so-called 
modified Orr-Sommerfeld equation that can be applied in the layer. Contrary to what one might think of, we find 
that Squire’s theorem is not applicable for the boundary layer. We find also that normalization by inertial or 
viscous effects leads to the same order of stability or instability. For the 2-D disturbances flow ሺߠ ൌ 0ሻ, we find 
the same critical Reynolds number for our two normalizations. This value coincides with the one we know for 
neutral stability of the known Orr-Sommerfeld equation. We notice also that for all over values of k in the case 
ߠ ൌ 0, correspond the same values of  ܴ݁ఋ at ܿ ൌ  0 whatever the normalization. We therefore conclude that 
in the boundary layer with 2-D disturbances, we have the same neutral stability curve whatever the normalization. 
We find also that for a flow with high hydrodynamic Reynolds number, the neutral disturbances in the boundary 
layer are two dimensional. At last, we find that transition from stability to instability or the opposite can occur 
according to the Reynolds number and the wave number. 

Keywords: boundary-layer, linear stability, inertial normalization, viscous normalization, modified 
Orr-Sommerfeld equation   

1. Introduction 

Boundary-layer theory is crucial in understanding why certain phenomena occur. It is well known that the 
instability of boundary layer is sensitive to the mean velocity profile, so that a small distortion to the basic flow 
may have a detrimental effect on its stability. Prandtl (1904) (Landau & Lifchitz, 1997) proposed that viscous 
effects would be confined to thin layers adjacent to boundaries in the case of the motion of fluids with very little 
viscosity i.e. in the case of flows for which the characteristic Reynolds number, Re, is large. In a more general 
sense we will use boundary-layer theory (BLT) to refer to any large-Reynolds-number. Ho and Denn (1977) 
studied low Reynolds number stability for plane Poiseuille flow by using a numerical scheme based on the 
shooting method. They found that at low Reynolds numbers no instabilities occur, but the numerical method led 
to artificial instabilities. Lee and Finlayson (1986) used a similar numerical method to study both Poiseuille and 
Couette flow, and confirmed the absence of instabilities at low Reynolds number. Ray, Samad, and Chaudhury 
(2000) investigated the linear stability of plane Poiseuille flow at small Reynolds number of a conducting 
Oldroyd fluid in the presence of magnetic field. They found that viscoelastic parameters have destabilizing effect 
and magnetic field has a stabilizing effect in the field of flow but no instabilities are found. 

In this paper, we study the linear stability of boundary layer in a plane Poiseuille flow. For this, we derive two 
fourth-order equations that we have named “modified fourth order Orr-Sommerfeld equations” because they are 
different from the known standard Orr-Sommerfeld equation. 

The two news equations that we have derived in this paper are used to study the stability analysis in boundary 
layer for the flow. The first is obtained by making dimensionless quantities by the inertial effects. The second 
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takes into account the form adopted by the rheologists i.e. make the quantities dimensionless by normalizing by 
the viscous effects. This allowed us to see the effect of each type of normalization on the stability in the 
boundary layer. So, we solve numerically the corresponding eigenvalues problems. We employ Matlab in all our 
numerical computations to find eigenvalues. 

The paper is organized as follows. In the second section the boundary layer theory is presented. In the third 
section we present the general formulation, highlighting the fundamental equations that model the flat-plate 
boundary layer flow according to the normalization by inertial and viscous effects. In the fourth section the 
modified Orr-Sommerfeld equations governing the stability analysis in boundary layer are checked and in the 
fifth section, analysis of the stability is investigated. The conclusions are presented in the final section. 

2. Boundary Layer Theory 

When applying the theory of complex potential around an airfoil in considering the model of inviscid 
incompressible irrotational plan flow, we know that the model allows to deduce the lift but the drag is zero. This 
is contrary to experimental observations which show that the drag affects all flows of real fluids; these are 
viscous. They adhere to the walls and the tangential component of the velocity is zero if the wall is fixed. The 
latter condition can be satisfied by the perfect fluid. Moreover, the irrotational condition is far from reality as we 
know that the production of vorticity occurs at the walls. To remedy the deficiencies of the theory of perfect fluid, 
it must appeal to the theory of the boundary layer which is a necessary correction for flows with high Reynolds 
numbers. 

Theory of boundary layer is due to Prandtl (Landau & Lifchitz, 1997). The boundary layer is the area of the flow 
which is close to the wall or of an obstacle present in a uniform flow at the upstream infinity or on the confining 
walls of internal flow. Within the boundary layer is a thin zone, it is estimated that viscous effects are of the same 
magnitude as the inertial effects. The boundary layer is the place of intense generation of vorticity which will not 
diffuse into the area outside thereof. This leads to a very modern concept of comprehensive approach to the 
problem by breaking it down into two areas: firstly the boundary layer where we will consider the viscous effects 
in a model of simplified Navier-Stokes and other from the outer area where we will use the complex potential 
theory in the inviscid incompressible flow. This outer zone has speeds which are of the same order of magnitude 
as that of the incident flow. 

The boundary layer along an obstacle is therefore thin since the fluid travel great distances downstream of the 
leading edge during the time interval during which the vortex diffuse only a small distance from the wall. The 
creation of vorticity in the boundary layer allows the physical realization of the fluid flow around the profile. 
This movement gives rise to a wake in the area near the trailing edge. The importance of the wake depends on 
the shape of the obstacle and the angle of incidence of the upstream flow at the leading edge.  

We consider incompressible flow of a fluid with constant density ρ and dynamic viscosity μ, past a body with 
typical length L. We assume that a typical velocity scale is U, and the Reynolds number is given by 

                                          ܴ ൌ
ఘ

ఓ
ب 1                                             (1) 

For simplicity we will, for the most part, consider two-dimensional incompressible flows, although many of our 
statements can be generalized to three-dimensional flows and/or compressible flows.  

Boundary Layer Theory applies to flows where there are extensive inviscid regions separated by thin shear layers, 
say, of typical width  ߜ ا  ොݕ ො andݔ For one such shear layer take local dimensional cartesian coordinates .ܮ
along and across the shear layer respectively. Denote the corresponding velocity components by ݑො  and ݒො 
respectively, pressure by ̂ and time by ̂ݐ. On the basis of scaling arguments it then follows that 

ܴ~ߜ                                            
ି

భ
మܮ ا  (2)                                                ܮ

Further, it can also be deduced that the key approximations in classical Boundary Layer Theory are that the 
pressure is constant across the shear layer i.e. 

                                          0 ൌ െ̂௬ො                                         (3) 

and that stream wise diffusion is negligible, i.e. if • represents any variable 

                                         •௬ො௬ො  ௫ො௫ො                                        (4)•ب 

The former approximation is more significant dynamically. 
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Navier–Stokes equations for an incompressible flow where pressure and time are normalized by inertial effects 

                 
డ௨ഥ

డ௫


డ௩ത

డ௬


  డ௪ഥ

డ௭
ൌ 0                                     (11) 
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డ௬
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డ

డ௭
are linearized around a two-dimensional, steady base flow 

ሺܷሺݔ, ,ሻݕ ܸሺݔ, ,ሻݕ 0ሻ to obtain the stability equations for the spatial evolution of three-dimensional, time 

dependent disturbances  ሺݑሺݔ; ;ݕ  ;ݖ  ;ሻݐ  ;ݔሺݒ  ;ݕ  ;ݖ  ;ሻݐ  ;ݔሺݓ  ;ݕ  ;ݖ  ;ሻݐ  ;ݔሺ  ;ݕ  ;ݖ   ሻሻ .The base flow and theݐ 

disturbances are scaled in the same way. The disturbances are taken to be periodic in the span wise direction and 

time, which allows us to assume solutions of the form  

               ݂ ൌ መ݂ሺݔ, ሻ݁ሺ ோഃݕ  ఈሺ௫ሻௗ௫ାఉ௭ିఠ௧ሻ
ೣ

ೣబ                                 (15) 

where ݂  represents either one of the disturbances ݑ, ,ݒ  or ݓ  and  ݔ  is the initial position of the 
disturbance on x-axis.. The complex streamwise wave number ߙ captures the fast wavelike variation of the 

modes and is therefore scaled with  
ଵ

 ఋ
 is scaled with ݈, the ݔ Since .ݔ itself is assumed to vary slowly with ߙ .

factor  ܴ݁ఋ appears in front of the integral. The ݔ-dependence in the amplitude function መ݂ includes the weak 
variation of the disturbances. The real span wise wave number ߚ and angular frequency ߱ are scaled in a 
consistent way with ݖ and ݐ, respectively. Remember here that we have scaled time and pressure by inertial 
effects.  Introducing the assumption (11) in the linearized Navier–Stokes equations and neglecting all third 

order terms in 
ଵ

 ோഃ
 or higher, we arrive at the parabolized stability equations in boundary-layer scalings 

ො௫ݑ  ݅ ܴ݁ఋݑߙො  ො௬ݒ  ෝݓߚ݅ ൌ 0 ,                                  (16) 

ሺܷ௫  ݅ ܴ݁ఋܷߙ െ ݅߱ሻݑො  ො௫ݑܷ  ො௬ݑܸ  ܷ௬ݒො 
ොೣ
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ఈො
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ൌ ො௬௬ݑ െ ݇ଶݑො,                 (17) 

൫ ௬ܸ  ݅ ܴ݁ఋܷߙ െ ݅߱൯ݒො  ො௫ݒܷ  ௫ܸݑො௬  ො௬ݒܸ  ௬̂ ൌ ො௬௬ݒ െ ݇ଶݒො,                     (18) 

ሺ݅ ܴ݁ఋܷߙ െ ݅߱ሻݓෝ  ෝ௫ݓܷ  ෝ௬ݓܸ  ̂ߚ݅ ൌ ෝ௬௬ݓ െ ݇ଶݓෝ,                                 (19) 

where ݇ଶ ൌ ଶߙ   .ଶߚ

If we normalize pressure and time by viscous effects i.e. ݐ scaled with 
ఘమ

ఓ
 and  scaled with 
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The linearized Navier-Stokes equations with the previous disturbances under the same considerations become 

ො௫ݑ  ݅ ܴ݁ఋݑߙො  ො௬ݒ  ෝݓߚ݅ ൌ 0 ,                              (24) 

ቀܷ௫  ݅ ܴ݁ఋܷߙ െ
ఠ

 ோഃ
మቁ ොݑ  ො௫ݑܷ  ො௬ݑܸ  ܷ௬ݒො 

ොೣ

 ோഃ
మ 

ఈො

 ோഃ
ൌ ො௬௬ݑ െ ݇ଶݑො,            (25) 

ቀ ௬ܸ  ݅ ܴ݁ఋܷߙ െ
ఠ

 ோഃ
మቁ ොݒ  ො௫ݒܷ  ௫ܸݑො௬  ො௬ݒܸ  ௬̂ ൌ ො௬௬ݒ െ ݇ଶݒො,               (26) 

ቀ ܴ݅݁ఋܷߙ െ
ఠ

 ோഃ
మቁ ෝݓ  ෝ௫ݓܷ  ෝ௬ݓܸ  ̂ߚ݅ ൌ ෝ௬௬ݓ െ ݇ଶݓෝ,                 (27) 

Where  ݇ଶ ൌ ଶߙ   .ଶߚ

4. Modified Orr-Sommerfeld Equation 

Considering temporal the stability problem with ߱ ൌ ,ߙand ሺ ܿߙ  ሻ real, we will simplify the problem. Ourߚ
strategy will be first to eliminate ݑ,ෝ ,ෝݓ  ො. This can be used finally to determineݒ to leave a single equation in ̂
the linear stability (or instability) in the boundary layer of the base flow. Remember that ܿ ൌ c୰   ݅ܿ  and 
if  ܿ ൏ 0, the flow is stable, ܿ  0, the flow is unstable and we have neutral stability for  ܿ  ൌ 0. Taking 
ఋሺ17ሻܴ݁ߙ݅   ሺ19ሻ we getߚ݅
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Using the continuity Equation (16), (28) becomes 
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Operating across (29) with 
ௗ

ௗ௬
, using the assumptions in boundary layer and the Equation (18) we get the 

modified Orr-Sommerfeld equation for the boundary layer 
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Considering normalization with viscous effects we would have 
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In Equations (30) and (31), we have ݒො ൌ ොᇱݒ ൌ 0 at ݕ ൌ േ1. 
5. Stability Analysis 

We put Equations (30)-(31) respectively in eigenvalues problem forms 

   ቆ ܴ݁ఋܷ ቀ
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In order to investigate the application of the Squire theorem, consider first the normalization with inertial effects 
(32). Often, however, we are only interested in the instability that appears first as the control parameter  ܴ݁ఋ  is 
increased. In this case, Squire’s theorem tells us that we need only consider 2D disturbances. 

Consider a base state ܷሺݕሻ. Imagine a growing 3D disturbance to this base state at Reynolds number  ܴ݁ఋଷ, 
with wave numbers ߙଷ,ߚଷ and ݇ଷ

ଶ ൌ ଷߙ
ଶ  ଷߚ

ଶ. This corresponds to a solution ܿ, ො with ܿݒ  0 (of 
the modified Orr-Sommerfeld equation) 
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ሺ݅ߙଷܷ ܴ݁ఋଷ െ ଷሻߙܿ݅ ቀ
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Now consider a 2D disturbance at a Reynolds number ܴ݁ఋଶ. This has, ଶߚ ൌ 0, 

݇ଶ ൌ  ଶ and must satisfy the 2D modified Orr-Sommerfeld equationߙ

ሺ݅ߙଶܷ ܴ݁ఋଶ െ ଶሻߙܿ݅ ቀ
ௗమ

ௗ௬మ െ ଶߙ
ଶቁ ොݒ െ ොݒ′′ଶ ܴ݁ఋଶܷߙ݅ ൌ ቀ

ௗమ

ௗ௬మ െ ଶߙ
ଶቁ

ଶ
 ො            (35)ݒ

For values ߙଶܴ݁ఋଶ ൌ ଷߙ , ଷܴ݁ఋଷߙ ൌ ଶ  and ݇ଷߙ ൌ ݇ଶ , this 2D modified Orr-Sommerfeld equation 

has the form 

   ሺ݅ߙଷܷ ܴ݁ఋଷ െ ଷሻߙܿ݅ ቀ
ௗమ

ௗ௬మ െ ݇ଷ
ଶቁ ොݒ െ ොݒ′′ଷ ܴ݁ఋଷܷߙ݅ ൌ ቀ

ௗమ

ௗ௬మ െ ݇ଷ
ଶቁ

ଶ
 ො            (36)ݒ

which is exactly the same as (34). It must therefore have the same growing solution ܿ, ො withܿݒ  0. 

Therefore, corresponding to the growing 3D disturbance at ܴ݁ఋଷ with ߙଷ,ߚଷ and ݇ଷ
ଶ ൌ ଷߙ

ଶ  ଷߚ
ଶ, 

there exists a growing 2D disturbance at t ܴ݁ఋଶ with ݇ଷ ൌ ଶߙ ଶ  andߙ ൌ  ଷ . These conditions lead toߙ

݇ଷ ൌ ଷ  and we get that the disturbances are two-dimensional. Finally, we getߙ  ܴ݁ఋଶ ൌ  ܴ݁ఋଷ , not 

 ܴ݁ఋଶ   ܴ݁ఋଷ. And so, we can not applied the Squire’s theorem in the boundary layer of the flow. 

Using the same assumptions in (33), we get first ܴ݁ఋଶ
ଶ ൌ

ఈమವ

ఈయವ
ܴ݁ఋଷ

ଶ with ݇ଶ ൌ ݇ଷ  i.e. ߙଶ ൌ ݇ଷ  and 

secondly  ܴ݁ఋଶ ൌ
ఈయವ

ఈమವ
ܴ݁ఋଷ

ଶ  with  ݇ଶ ൌ ݇ଷ  i.e. ߙଶ ൌ ݇ଷ . So we have first  ܴ݁ఋଶ   ܴ݁ఋଷ  and 

secondly  ܴ݁ఋଶ   ܴ݁ఋଷ  because  ݇ଷ  ଷ . We see therefore that we must takeߙ  ܴ݁ఋଶ ൌ  ܴ݁ఋଷ  and 

so ݇ଷ ൌ  ଷ . We find the same result that the disturbances are two-dimensional and then Squire’s theoremߙ

can’t be applied. 

Finally, we still consider our three-dimensional disturbances so without using the theorem of Squire. Thus we 
write ߙ ൌ ݇ cos ߠ with ߠ ൌ ሺሬ݇Ԧ

௫, ሬ݇Ԧሻ. This will allow us to deduce whether the application of Squire’s theorem 
in the boundary layer. Indeed ߠ ൌ 0 corresponds to a two dimensional disturbance i.e. ݇ ൌ  .ߙ

We employ Matlab (Windows Version) in all our numerical computations to find eigenvalues. A Poiseuille flow 
with the basic profile 

                        ܷሺݕሻ ൌ 1 െ  ଶ                                         (37)ݕ
is considered. 

The eigenvalue problems (32)-(33) are solved numerically with the suitable boundary conditions. The solutions 
are found in a layer bounded at ݕ ൌ േ1 with ܷሺേ1ሻ ൌ 0. 

The results of calculations are presented in the following figures. In each group of three figures, the first one is 
Figure a), the second is Figure b) and the third is Figure c). First we present the figures relatives to the 
eigenvalue problem (32). Note that here and in all figures, ܴ݁ replace ܴ݁ఋ. 

For a fixed ݇ ൌ  1, we get figure 2 of ܿ vs. ܴ݁ for sequential values of ߠ in which a) shows the entire graph. 
b) and c) are the magnified versions of a). 

For a fixed ݇ ൌ  2, we get figure 3 of ܿ vs ܴ݁ for sequential values of ߠ in which a) shows the entire graph. 
b) and c) are the magnified versions of a). 

For a fixed ݇ ൌ  4, we get figure 4 of ܿ vs. ܴ݁ for sequential values of ߠ in which a) shows the entire graph. 
b) and c) are the magnified versions of a). 

Secondly we present the figures relatives to the eigenvalue problem (33). 

For a fixed ݇ ൌ  1, we get figure 5 of ܿvs ܴ݁ for sequential values of ߠ in which a) shows the entire graph. 
b) and c) are the magnified versions of a). 

For a fixed ݇ ൌ 2, we get figure 6 of ܿvs ܴ݁ for sequential values of ߠ in which a) shows the entire graph. b) 
and c) are the magnified versions of a). 
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Through the Figures 1 and 4, it is easy to see that if we take a curve with ߠ ് 0 in the instability area ሺܿ  
 0ሻ, we don’t have necessary in the two normalization ܴ݁ఋሺߠ ൌ 0ሻ ൏  ܴ݁ఋሺߠ ് 0ሻ. We also see through the 
figures that the normalization of time and pressure by inertial effects or viscous effects lead to the same order of 
stability/instability in the boundary layer. This confirms that in the boundary layer, viscous forces are on the 
same magnitude as the inertial forces i.e. the local Reynolds number is on unity order. We see also through the 
figures that at low Reynolds number the flow is stable but if the Reynolds number increase, instability appears. 
The increase of the wave number induce also the stability of the flow. By figure 7 we find the first value of ܴ݁ఋ 
and ߙ for which the first transition from stability to instability occurs i.e. ܿ  ൌ  0 in the case ߠ ൌ 0. We find 
the values ሺ ܴ݁ఋ , ሻߙ ൌ ሺ5772 , 1.02ሻ which corresponds exactly to the one we know as critical value of the 
neutral stability of Poiseuille flow. Note that this value is the same in figure 7(a) which corresponds to 
normalization by inertial effects and in figure 7(b) which corresponds to normalization by viscous effects. We 
noticed also that for all overs values of k in the case ߠ ൌ 0 correspond the same values of  ܴ݁ఋ at ܿ  ൌ  0 
whatever the normalization. We therefore conclude that in the boundary layer with a 2D-disturbance, we have 
the same neutral stability curve whatever the normalization. 

 

Figure 2. (a) Growth rate ܥ vs. Reynolds number ܴ݁ with ݇ ൌ  1; (b) zoom of (a) to small values of ݇; (c) 

zoom of (b) to small values of ܴ݁ 
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Figure 3. (a) Growth rate ܥ vs. Reynolds number ܴ݁ for ݇ ൌ 2; (b) zoom of (a) to small values of ݇ ; (c) 

zoom of (b) to small values of ܴ݁ 

 

Figure 4. (a) Growth rate ܥ vs. Reynolds number ܴ݁ for ݇ ൌ 4; (b) zoom of (a) to small values of ݇; (c) zoom 

of (b) to small values of ܴ݁ 
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Figure 5. (a) Growth rate ܥ vs. Reynolds number ܴ݁ for ݇ ൌ  1; (b) zoom of (a) to small values of ݇; (c) 

zoom of (b) to small values of ܴ݁ 

 

Figure 6. (a) Growth rate ܥ vs. Reynolds number ܴ݁ for ݇ ൌ  2; (b) zoom of (a) to small values of ݇; (c) 
zoom of (b) to small values of ܴ݁ 
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