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Abstract  

The structural stability and theoretical strength of BCC crystals Fe, V, Nb and Ta under hydrostatic loading have 
been investigated by using the modified analytical embedded atom method (MAEAM). For all the calculated 
BCC crystals, the failures occur while the relation >0 is violated in compression and >0 is violated in tension. 
It found that the stable regions are 0.9269~1.1495, 0.9270~1.1545, 0.9268~1.1449 and 0.9268 ~ 1.1427 in the 
lattice stretch or the corresponding -408.89 ~ 123.54, -186.96 ~ 131.43, -259.07 ~ 152.53 and -283.92 
~137.04eV/nm3 in the theoretical strength for Fe, V, Nb and Ta, respectively. The calculated maximum tensile 
stresses max of Fe, V, Nb and Ta are 123.57, 131.74, 154.45 and 137.85eV/nm3 and the corresponding lattice 
stretch max are 1.1527, 1.1617, 1.1661 and 1.1545. The calculated maximum tensile stress max and the 
corresponding lattice stretch max of Fe are consistent well with the results of Ab initio calculation. 

Keywords: Fe crystal, stability, theoretical strength, MAEAM 

1. Introduction 

Triaxial tension occurs in solids in the vicinity of some types of defects in the microstructure of crystalline solids, 
e.g., cracks, pores, voids, and complex phase or grain boundaries (Kelly & Macmillan, 1986). To understand the 
structure and behavior of these defects, information on local elastic constants and theoretical (ideal) strength is 
necessary. For example, the theoretical strength of a perfect crystal plays an important role in determining the 
stress distribution near the tip of a crack and is important in determining whether a material will exhibit brittle or 
ductile behavior (Kelly, 1966). 

The theoretical strength of a material is defined as the stress at which a homogeneously deformed perfect crystal 
becomes elastically unstable with respect to internal displacements (Clatterbuck, Chrzan, & Morris Jr, 2003). 
The stable region is sensitive to the behavior of the loading mechanism and the theoretical strength is strongly 
depends on the direction of tension or compression since it is anisotropic. For these interesting properties, the 
structural and theoretical strength of solids have been widely investigated with many experimental (Fuente et al., 
2002) and theoretical (Kanchana, Vaitheeswaran, & Rajagopalan, 2003) methods. Experimentally, the whiskers 
or nanoindentation experiments were used to investigate the stability or theoretical strength of the crystals under 
pressure. Theoretically, many simulation methods, such as the linear muffin-tin orbital (LMTO) method, the 
pair-potential theory (Milstein & Huang, 1978), the embedded-atom method (EAM) (Milstein and Chantasiriwan, 
1998), the molecular-dynamics (MD) simulation (Qi, Zhang, & Hu, 2004), Ab initio calculation (Saib & 
Bouarissa, 2007) etc., have been used. Among all the theoretical methods, the Ab initio calculation based on 
quantum mechanics is thought to be the most precise, however, the complex calculations and long computation 
time requires higher-performance computing. 

Some properties of body-centered cubic (BCC) crystal Fe under hydrostatic loading (Černý et al., 2003) have 
been investigated with Ab initio. The main purpose of this paper is to compute theoretical strength and find out 
the stable region of BCC crystal Fe, V, Nb, and Ta under hydrostatic loading by using the modified analytical 
embedded atom method (MAEAM). This method has been used successfully in our previous papers to analyze 
the stability of the face-centered cubic (FCC) crystal Ni (Zhang, Li, & Xu, 2007), Au (Zhang et al., 2008a) and 
the BCC crystal Fe (Zhang et al., 2008b) under uniaxial loading and BCC transition metals Cr, Mo and W (Li, 
Zhang, & Xu, 2008) under hydrostatic loading respectively and the other properties of the metals and alloys. 
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2. Simulation Method 

2.1 MAEAM 

In MAEAM, the total energy of a system 
tE  is expressed as 
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where 
iE  is the energy contribution from atom i  to the total energy 

tE , ( )iF   is the energy to embed an 
atom in site i  with electron density 

i  which is given by a linear superposition of the spherical averaged 
atomic electron densities of other atoms ( )ijf r , ijr  is the separation distance of atom j from atom i, ( )ijr  is 
the pair potential between atoms i and j, and ( )iM P  is the modified term which describes the energy change 
due to the deviation from the linear superposition. The embedding function ( )iF  , pair potential ( )ijr , 
modified term ( )iM P  and atomic electron density ( )ijf r  take the following forms 
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where the subscript e indicates equilibrium state and 1er  is the first nearest neighbor distance at equilibrium. In 
this paper, the atomic election density at equilibrium 

ef  is chosen as 
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where 
3
0

2

a
   is the atomic volume in BCC metals ( 0a  is the unstressed lattice constant), 

cE  and 
1 fE  are 

cohesion energy and mono-vacancy formation energy, respectively. 

The other parameters n, F0, α, k0, k1, k2 and k3 in Eqs. (4)-(6) can be determined by cohesion energy Ec, 
mono-vacancy formation energy E1f, lattice constant a0, and elastic constants C11, C12, C44 of the metals 
considered 
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According analysis of Zhang et al, the pair-potential ( )ijr  represented by Eq. (5) can be used only for the 
separated distance between atoms is shorter than the second neighbor distance r2e and should be substituted by 
following cubic spline function (termed as a cutoff potential) while the separated distance between atoms ranges 
from r2e to rc.
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Four parameters l0, l1, l2, l3, and cutoff radius rc are taken as 
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where r2e and r3e are the second and the third neighbor distance at equilibrium, and 2
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By substituting physical parameter a0, Ec, E1f, C11, C12 and C44 (listed in Table 1) into Eqs. (8)-(15), we can 
obtained the model parameters for Fe, V, Nb, and Ta (see Table 2). 

 

Table 1. The input physical parameters for Fe, V, Nb and Ta, 0a  is in nm , cE  and 1 fE  in eV  and ijC  
in GPa . 

Metals 0a  
cE  

1 fE  
11C  

12C  
44C  

Fe 0.28664 4.28 1.79 230 135 117 

V 0.30282 5.31 2.10 230 120 43.2 

Nb 0.33007 7.57 2.75 245 132 28.4 

Ta 0.33026 8.10 2.95 262 156 82.6 

 

2.2 The Stability Criteria 

For a cubic crystal undergoing homogeneous deformation, the strains   of the crystal are expressed as: 
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where aα0, i.e. a0 above, is the initial unstressed lattice constant, aα is the instantaneous stressed lattice parameter. 
Since only a hydrostatic stress is applied, both the shear strains εα and shear stresses σα ( 4,5,6)   equal to zero. 

The normal stress σα acting on a face of the unit cell is defined by the first order derivative of internal energy 
iE  

with respect to the normal strain   
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The elastic parameters Cαβ which can be expressed in terms of the second derivatives of the internal energy with 
respect to the lattice strains εα. 
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Based on the crystal symmetry of the crystal and using Eqs. (1)-(3) and (22)-(25), we can get: 
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where 
jr , i.e. 

ijr  above, is the separation distance of atom j from atom i, the subscript i is neglected here since 
the site i  is selected as the origin of the coordinate system. 

Under hydrostatic loading, the applied pressure P  equals to the negative normal stress on each plane, viz. 

1P    (
2 3     ). Three principal edges of the cubic lattice cell a1, a2 and a3 remain equal to each other 

throughout the hydrostatic loading and their included angles a4, a5 and a6 will retain their initial values of / 2  
(at least until failure occurs) due to no shear stresses. 

For a cubic system under hydrostatic loading, the stability criteria are expressed as follows 
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44' 0 C P                                       (30) 

where κ is bulk modulus, μ and μ′ are the shear moduli, P is the applied pressure at current strain. The above 
stability criteria are presented by Born and then modified by Milstein. The theoretical strength is the value of the 
stress at which anyone of the above three conditions is not satisfied. 

3. Results and Discussions 

The variation of the internal energy per atom 
iE , the normal stress 

1 , the stability criteria as a function of the 
principal stretch λ ( 1 2 3 0/a a      ) are shown in Figure 1-3. Only the stability criteria of Fe are given in 
Figure 3 since the similar curves are obtained for V, Nb and Ta. 
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Figure 1. Energy per atom as a function of  
 

From Figure 1, it can be seen that, for BCC crystal Fe, V, Nb, and Ta under hydrostatic loading, whether 
compressive or tensile loading from initial state, the internal energy per atom 

iE  are all increased. Such 
behavior is due to the work which is done by applied stresses and the initial stress-free state corresponds to the 
minimum energy. The result of the internal energy per atom 

iE  for Fe is similar to that of the Ab initio 
calculations. 

 

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

 V

 

 

N
or

m
al

 s
tr

es
s 
 1

 (
10

3 eV
/n

m
3 )



 Nb

 Fe

 Ta

 

Figure 2. Normal stress as a function of  

 



www.ccsenet.org/apr Applied Physics Research Vol. 4, No. 3; 2012 

13 
 

From Figure 2, we can see that, with decreasing the lattice stretch λ from initial stress-free state, the compressive 
stress σ1 increases monotonously and quickly for Fe. However, the compressive stress 

1  increases quickly at 
first and then slightly for V, Nb and Ta. The increased sequence of the compressive stress with decreasing λ is for 
Fe, V, Nb and Ta. While with increasing the lattice stretch λ from initial state, the tensile stress increases till the 
maximum tensile stress max  is reached and then decreases slightly. The calculated maximum tensile stresses 

max  are 123.57, 131.74, 154.45 and 137.85ev/nm3, and the corresponding lattice stretch 
max  are 1.1527, 

1.1617, 1.1661 and 1.1545 for Fe, V, Nb, Ta, respectively (listed in Table 3 for convenient). The maximum 
tensile stress 3

max =123.57eV/nm  and the corresponding lattice stretch 
max 1.1527   of Fe approach to the 

results of 26.7 GPa  and the corresponding 
max 1.15   calculated by Ab initio with generalized gradient 

approximation (GGA). 
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Figure 3. The stable criteria as a function of for Fe 

 
From Figure 3, it can be seen that, the bulk modulus κ and the shear modulus μ′ of Fe decrease with increasing λ. 
At 1.1495  , the shear modulus κ passing through zero and the condition 0   is violated. The shear 
modulus μ decreases firstly and then increases passing through zero at 0.9269   with increasing  . Then the 
shear modulus μ increases continually till to the maximum and then decreases passing through zero at 

1.1683  . So the stable region of Fe is 0.9269~1.1495 in the lattice stretch λ. The similar curves are obtained 
for V, Nb and Ta and the stable regions are determined to be 0.9270~1.1545, 0.9268~1.1449 and 0.9268~1.1427 
in the lattice stretch λ, respectively. The corresponding compressive and tensile theoretical strengths are 408.89 
and 123.54, 186.96 and 131.43, 259.07 and 152.53, 283.92 and 3137.04eV/nm  for Fe, V, Nb, Ta respectively 
(listed also in Table 3 for convenient). 

It is interesting to note that from Table 3, for each of the four crystals, the tensile strength is slightly lower than 
its maximum tensile stress. Second, the compressive strength is higher than tensile strength especially for Fe. 
Third, the stable regions are almost equal with respect to the lattice stretch λ, especially in compressive region. 

 

Table 2. The calculated parameters for Fe, V, Nb and Ta, n  and ef  are dimensionless, 
0F ,   and ik  are 

in eV  

Metals n    0F  ef  0k  1k  2k  3k  

Fe 0.2778 0.0173 2.4900 0.3937 -0.3495 -0.2983 0.2765 0.1020 

V 0.4782 0.1163 3.2100 0.4153 0.4452 -1.3959 0.6278 0.0203 

Nb 0.6186 0.1328 4.8200 0.4539 0.7943 -2.0786 0.8912 0.0003 

Ta 0.3605 0.1742 5.1500 0.4718 0.0071 -1.1755 0.6406 0.0939 
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Table 3. The maximum tensile stress max  and the corresponding lattice stretch 
max , the stable region 

represented in lattice stretch λ and the compressive and tensile strengths for BCC metals Fe, V, Nb and Ta 

Metals max (eV/nm3) max  Stable Region 
Theoretical Strength (eV/nm3) 

compressive tensile 

Fe 123.57 1.1527 0.9269~1.1495 408.89 123.54 

V 131.74 1.1617 0.9270~1.1545 186.96 131.43 

Nb 154.45 1.1661 0.9268~1.1449 259.07 152.53 

Ta 137.85 1.1545 0.9268~1.1427 283.92 137.04 

 

4. Conclusions 

The structural stability and theoretical strength of BCC crystals Fe, V, Nb and Ta under hydrostatic loading have 
been investigated by combining the MAEAM with Milstein modified Born stability criteria. The conclusions are 
summarized as follows: 

(1) For all four BCC crystals under hydrostatic loading, as expected whether compressive or tensile loading from 
initial state, the internal energy per atom 

iE  are all increased. 

(2) The failures occur while the condition μ>0 is violated in compressive region and κ>0 is violated in tensile 
region. 

(3) The stable regions are almost equal with respect to the lattice stretch λ, especially in compressive region. 

(4) For each of the four crystals, the tensile strength is slightly lower than the maximum tensile stress, however, 
the compressive strength is higher than tensile strength especially for Fe. 
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