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Abstract 

Signal processing methods have been changed substantially over the last several decades. Traditional sampling 
theorem of Shannon-Nyquist states that the sampling rate must be at least twice the maximum frequency 
presented in the signal; however, sampling at the Nyquist rate is inefficient because the signals of interest contain 
only a small number of significant frequencies relative to the band limit, although the locations of the 
frequencies may not be known a priori. Recently, compressive sensing (CS) has made a paradigmatic step in the 
way information is presented, stored, transmitted and recovered, by which we can acquire and reconstruct sparse 
signals from sub-Nyquist incoherent measurements. Three key ingredients of successfully implementing 
compressed sampling technique are sparsible/compressible probed signal, reliable hardware design, and low-cost 
computational algorithm. In this paper, we focused on two aspects about the robust sampling of 
sparsible/compressible signal, in particular, the design of compressed sampling hardware and the robust 
reconstruction via sparse Bayesian analysis. Primary results showed the high performance of proposed strategies.  
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1. Introduction 

Signal processing methods have been changed substantially over the last several decades. Traditional 
Shannon-Nyquist based sampling strategy states that the sampling rate must be at least twice the maximum 
frequency presented in the signal. However, sampling at the Nyquist rate is inefficient in many cases, for 
example, the signals of interest contain only a small number of significant frequencies relative to the band limit. 
Recently, researchers in the growing vigorously field of compressive sensing (CS) have made a step forward by 
relating a signal’s sparsity structure with its acquisition and have showed that one can recover a sparse signal 
from a few linear non-adaptive measurements (Candes et al., 2006; Candes and Romberg, 2007; Candes and Tao, 
2006; Donoho, 2006; Romberg, 2008; Li et al., 2009). Accordingly, CS has made a paradigmatic step in the way 
information is presented, stored, transmitted and recovered, by which we can acquire and reconstruct sparse 
signals from their sub-Nyquist incoherent measurements. Roughly speaking, CS can be an effective approach in 
situations such as: (a) The conventional Nyquist rate of sampling is too high to implement; for example, the 
current analogy-to-digital conversion (ADC) technology based on uniform sampling in the time or spatial 
domain is limited to within the order of 1GHz. (b) The number of sensors is limited due to implementation 
constraints or cost. (c) The sensing process may be slow so that only a small number of measurements can be 
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collected.  

Besides sparsity, other two key ingredients of implementation CS technique for practical applications are reliable 
hardware realization and robust signal reconstruction. It has been shown that the random matrix with entries 
independently drawn at random from a Gaussian distribution of zero mean and unit variance (or other 
distributions such as Bernoulli, and so on) can ensure the exact recovery of the signal which is sparse in arbitrary 
orthobase with overwhelming probability (Candes et al., 2006; Candes and Romberg, 2007; Candes and Tao, 
2006; Donoho, 2006). Following this theory, the well-known single-pixel camera was constructed by Baraniuk et 
al. Later on, many efforts to design the universal CS measurement instruments have been done by many 
researchers, for example, the chip-level Analogy-to-Information converter (Laska et al., 2007), the single-shot 
compressive spectral imager (Gehm et al., 2007; Marcia et al., 2009), the random lens (Fergus et al., 2006), and 
so on. Unfortunately, these CS measurements cannot be usually used in practice (at least cannot used for the 
real-time purpose) because of its time-consuming data collection and the difficulty of physical realization. To 
address this drawback, the random convolution based sampling strategy has been investigated from the aspects 
of theoretical analysis (Romberg, 2008) and empirical attempt (Tropp et al., 2006). Application of a random filter 
for compressive sensing was first mentioned by Tropp et al. who proposed two equivalent realization structures 
of a random filter: 1) convolution with a random waveform in the time domain, and 2) multiplication with 
random weights in the frequency domain, both followed by equal interval down-sampling. Following the 
Romberg’s theory, Jacques et al constructed the CMOS compressed imaging by using a lot of shift registers in a 
pseudo-random configuration.  

In this paper we will firstly focus on the random-convolution based sampling strategy and its hardware 
realization. Theoretical and experimental results from the time-reversal in random media have shown that 
exploiting the multi-scattering of acoustic and electromagnetic wave in random media can dramatically enhance 
the imaging resolution. Motivated by this observation, we will mainly study the application of wave 
scattering/propagation in random medium in low-cost hardware design for signal sampling and diffraction 
tomography. The proposed strategy has the following two advantages: 1) the generation of the measurement 
ensemble is computationally efficient and requires less memory; and 2) the proposed sampling hardware is 
universal from the viewpoint of compressive sensing, in particular, it can be applied to several transform 
domains and leads to simple implementations. It is noted that there are several similar works by exploiting the 
multi-path effect for complex signal environment, for example, the super-resolution migration imaging has been 
numerically investigated when the point-like clutters with known characteristics appears (Cheney, 2008), the 
random lens has been constructed to obtain super-resolution optical imaging from sparse measurements (Marcia 
et al., 2009), and so on. Secondly, we will discuss the robust reconstruction of sparse signals used, in particular, 
to address sparse signal reconstruction under some unreliable measurements. Recovering information from the 
maximum number of dependable observations with some unreliable ones is critical for robust signal sampling. 
We will investigate this problem from the viewpoint of sparse Bayesian estimation.  

2. Random Convolution Sampling Theory 

In a nutshell, compressed sampling (CS) acquires a signal of interest indirectly by correcting a small number of 
its projections rather than evenly sampling it at the Nyquist rate which can be prohibitively high for broadband 
signals encountered in many applications. This new signal acquisition paradigm has revolutionized that way 
digital data are traditionally acquired. The sparsity is one of key issues involved in current CS theory, which 
express the idea that the “information rate” of a continuous-time signal may be much smaller than that suggested 
by its bandwidth. In other words, a discrete-time signal depends on a number of degree of freedom which is 
relatively much smaller than its length; actually, many natural signals are sparse or compressible in the sense that 
they have sparse or approximately sparse representations when expressed in an appropriate basis or dictionary. 
Empirically, a vast amount of facts showed that many sub-Nyquist sampled signal sparse or compressible in 
some transformed domain can be exactly reconstructed through the lp-norm ( 0 1p  ) based recovery 
techniques, which is traced back to the work of Logan in 1965, Santosa and Symes in 1986, and Donoho and 
Stark in 1989. However, the sparse related concepts were generally agreed since the foundation of so-called 
compressed sampling (CS) developed by Candes, Tao, Romberg and Donoho in 2006 and 2007. Since then, a 
burst of intensive research activities in the new field of CS have been inspired in the past several years.  

Consider a discrete signal nx �  which itself may or may not be sparse in the canonical basis but is sparse or 
approximately sparse in an appropriate basisΨ , i.e., x Ψθ , where θ is sparse or approximately sparse. These 
measurements are realized by projecting the signal onto a series of test waveforms. For instance, if a discrete 
signal x is a n-dimensional vector and  , 1, 2,...,i i mφ is m test vectors with the same length as x, then the 
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measured data are given by 

                       , , 1, ,i iy i m x φ                                (1) 

where stands for the inner product of two vectors. Using matrix notation the sensing process is described by
 y Φx n , where n  means the “small perturbation in the data” referring either to signals that are not exactly 

sparse but nearly sparse, or to presence of noise in the sampling process.  

In the literatures the sensing matrixΦ required by CS theory is often chosen as a random matrix for it keeps 
small coherence withΨ . However, it is also known that the aforementioned random structures are inefficient in 
terms of realization and computation, especially for large-scale problems. So far, many sensing matrices with 
certain structures have been investigated by many authors and it is noted that the random convolution based 
approach is the most popular due to its outstanding advantages in the aspect of hardware design and algorithm 
consideration (Bajwa et al., 2007; Romberg, 2008; Rivenson and Stern, 2009; Tropp et al.,2006). Mathematically, 
the random convolution can be formulated by      y t x t h t  , where the input signal  x t and output signal

 y t is related by the random filter response  h t . Apparently, one key issue is that what kind of  h t can be 

used to sample the sparse signal using as less number of measurement as possible. In terms of classical linear 

algebra, the received signal  y t can be expressed as
1 *2n


      y S F Σ F x Φ x , where F is a discrete 

Fourier matrix with size n by n,    1 , ,
T

nx t x t   x  . The entries of diagonal matrix     1 ,..., ndiag H f H fΣ  

are unit magnitude complex numbers with random phase. One choice of the sampling matrix
S  from 

Romberg’s theorem is: to generate an i.i.d. sequence of Bernoulli random variables : 1,2, ,k k n   , each of 

which takes a value of 1 with probability m/n, and sample the locations selected from  : 1k kk    . The 

Romberg’s theorem universally works because the generated CS measurement matrix will be incoherent with 
any fixed orthonormal matrix with ‘overwhelming’ probability.  

Although the important success of Romberg’s theorem in design of digital circuit and numerical simulation, it is 
very hard to construct the analogy hardware that satisfies the unite amplitude-response within the working 
bandwidth. Here, we will investigate the CS theorem for convolution with white noise waveforms followed by 
deterministic subsampling. Performance of this framework is quite simple, straightforward and not costly. Only 
small adjustments are required to transform a traditional sensing system to a compressive sensing one. Practical 
examples include the famous coded aperture, radar system, CMOS compressed imaging, and so on.  

The basic idea behind Romberg’s work is that the randomness is designed in the frequency domain, where the 
spectrum of the random waveform has unit amplitude and independent random phase such that the random 
waveform is orthogonal with its shift which makes the convolution matrix orthogonal. In contrast, in our model 
the convolution matrix is not orthogonal and some frequency components of the interested signal will be filtered 
out. Accordingly, our model is not suitable for sensing signals which are sparse in the frequency domain; 
however, this sacrifice leads to an advantage of system realization. We showed that the suitability of the white 
convolution system for sensing a sparse signal depends on the coherence between the signal representation and 
the Fourier basis. Another important contribution is that the randomly selected sampling strategy is not necessary. 
We proved that subsampling at fixed locations also works well for the random convolution framework (Xiang et 
al., 2009). 

For practical consideration, we assume to sense a continuous signal with limited control parameters. The signal 
is band-limited or approximated by a limited-resolution observation. For simplicity, we suppose the bandwidth 
of the signal to be 1. Since      y t h t x t  , the full sampled data can be given by      y k h k x d    . For

      
1

sin c
k

x t x k t k


  , we are interested in recovery of the Nyquist samples   x k . Denote

      *sin t kh k h t c t  , then       
l

y k x l h k l  . It comes back to the discrete framework of convolution. 

However, the entries of the random sequence    , 1,...,h k k n  are not independent of one another in general. 

Since        ,, k lE h k h l  , where ,k l  is the Dirac function, we can still demonstrate the continuous problem by 

our discrete model,   , 1,...,h k k n , which is independent when generated from a Gaussian distribution. 

Accordingly, we can extend our convolution model into the continuous case. 
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In summary, we analyzed the random convolution framework, i.e., convolving the tested signal with a white 
random waveform, followed by subsampling at fixed locations in the measurement domain, i.e., equal interval 
sampling. As an effect of the reduction in the freedom of randomness, the linear CS convolution system needs 
more measurements than the circular one with the same size. It also becomes inefficient when the waveform 
length is too short relative to the signal length. Indeed, in some applications the bandwidth of the random 
waveform is shorter than the tested signal. However, even in this case one may have super-resolution results 
when the original signal is sparse enough or when more prior information is used.  

3. Application of Random Convolution Sampling Theory 

The basic requirement of random convolution based sampling theory is to construct a system whose system 
response likes random number. In many applied fields such as communication, radar, navigation, etc., the 
point-spread response of system under complex wave environment usually is treated as random function in view 
of complex behaviour of propagation path and energy lossy. Especially, the amplitude-frequency response of it 
will be constant for ideal lossless system, which is required by Romberg’s theory. Motivated by this observation, 
we will investigate wave phenomena in the random medium environment, and will explore its possibility of 
decreasing the number of signal sampled.  

Before proceeding to details, let us qualitatively consider the simplified situation as shown in Figure 1. A source 
transmitting pulse of  s t is located at origin of coordinate and surrounded by rectangle-ring random media 
while a receiver is a detector is located at rρ outside of this ring. It should be pointed out that in this work the 
structure is constructed by the dielectric (or metal) square cylinders with known electrical/geometrical 
parameters 8r   randomly located around probed obstacles. Assuming that the signal from transmitter arrives 
at the receiver through N independent propagation paths {di, i=1,2,…,N}, then the echoes recorded by the 
receiver can be approximately represented as 

 
1

N
i

i
i

d
y t a s t

c

   
 

  

where c is the light velocity, ia is decay coefficient for the ith propagation path. Readily we get the system 
response of random media as 

                         
1

exp
N

i
i

i

d
H a j

c
 



   
 

                        (2) 

Theoretically the expected response required by random convolution theorem can be achieved by adjusting the 
value of  , , 1,2,...i ia d i  (equivalently, controlling random media); however, this is a challenge optimization 
problem due to nonlinear interaction between wave (whether electromagnetic or acoustic) and media, and should 
be deeply investigated in the near future.   

From the viewpoint of electromagnetic/acoustic inverse problems, the above problem can be looked as the 
so-called inverse source problem; correspondingly the inverse scattering problem will be considered below, in 
particular, the diffraction tomography. Referring to Figure 1(b), three point targets are surrounded by the random 
media, while the transmitter and receiver are set to be outside the random medium. The location and reflectivity 
of ith target are iρ and i (i=1, 2,3), respectively, furthermore, we will assume there is no interaction between 
these three targets. Now our basic goal is to determine the distribution of reflectivity (i.e., find i at iρ  (i=1, 2,3)) 
from the time-domain data collected by the receiver located at rρ .  

The signal arriving at the ith objects is 

     
1

,
,

1

tN
it j

i it j it
j

d
s t a s t h t s t

c

 
    

 
 , 

where  
1

,1
,

1

exp
tN

it j
it it j

j

d
h t a j

c




  
   

   
 , itN is the number of wave paths connecting transmitter and ist object,

,it ja and ,it jd are the amplitude decay and electrical path of jth path, respectively. Now, the recorded wave 

scattered from 1st object can be expressed as 
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     
1

,
,

1

rN
ir j

i i ir j i i ir i i ir it
j

d
s t a s t h s t h h s t

c
  



 
        

 
  

 

where  
1

,1
,

1

exp
rN

ir j
ir ir j

j

d
h t a j

c




  
   

  
 , among

irN wave paths connecting the ist object and receiver, 

,ir ja and
,ir jd are the amplitude decay and electrical path of jth path, respectively. Finally, the echo collected by 

receiver becomes 

   i ir it
i

y t h h s t    

which can be rewritten as in the frequency domain, 

                            i i
i

y F                                     (3) 

where        i ir itF H H s     . Ideally   , 1,2,...iF i  should be the orthogonal basis in the sense of 

probability due to random sequences of ,ir ja , ,ir jd , ,it ja and ,it jd , which is exactly what the random 

convolution theory needs. We can empirically show     ,i j i jF F d C     through numerical simulation, 

where C is a constant, if the distance between any two pixels is larger than 
00.25 , which means the use of 

random media can realize the super-resolution tomography (
00.25 ) by the measurement configuration of one 

pair of transmitter/receiver, for convenience, call it compressive diffraction tomography.  

3.1 Compressed sampling filter 

We call a compressed-sampling filter (CSF) one for which the function relating the input signal to the output 
signal is pseudo-random (Li et al., 2009). In spirit of wave propagation in random media, one microwave circuit 
based CSFs working within the 2.0GHz to 4GHz to enable signal acquisition with sub-Nyquist sampling has 
been constructed, analyzed and tested. The results have empirically shown that by using the proposed 
architecture the S-sparse n-dimensional signal can be exactly reconstructed with  logO S n real-valued 

measurements or   log /O S n S  complex-valued measurements with overwhelming probability. The proposed 

CSF (with size of 96mm by 60mm) is shown in Fig. 2 (a), and the measured amplitude-frequency and 
phase-frequency responses of this CSF are provided in Fig. 2(b) and Fig.2 (c), respectively. So far there is no 
rigorous theoretical formulation for designing such microwave structure; however, one can design it under the 
guide of enriching the signal multi-scattering or multi-path effect to the maximum extent.  

To investigate the performance of the proposed CSF, in particular, how many measurements M are required to 
reconstruct exactly the K-sparse N-dim signal by the proposed structure, the methodology commonly used in the 
field of compressive sampling is exploited to check empirically the relation between K, N and the number of 
measurements M. To end this, assuming the length of unknown sparse signal x is 400, and the sampling ratio is 
1/3-Nyquist ratio. For each of 200 trials we randomly generate such sufficiently sparse vectors x (choosing the 
nonzero locations uniformly over the support in random and their values from N(0,1/400)). The graph presented 
in Fig. 3 shows that the success ratio for complex-valued data and real-valued data in recovering the true sparse 
signal, which shows that by the 1/3-Nyquist sampling, one realize the exact reconstruction of 120-sparse 
400-dim signal for complex-valued measurements and 30-sparse 400-dim signal for real-valued measurements. 
Fig.3 show that the for complex-valued measurements, the measurements with the order of O(Klog(N/K)) is 
enough to exactly reconstruct K-sparse N-dim signal; for real-valued measurements, the required measurements 
is order of O(Klog(N)). Moreover, this conclusion for signal which is sparse in the DCT and Harr-wavelet 
domain still exists. It should be pointed out that though the constructed CSF not satisfied the requirements from 
sampling theory studied previously, in particular, nonuniform amplitude-frequency response due to energy lossy 
dependent on frequency, and many other reasons, non-conjugate symmetry phase-frequency response, and so on, 
from the presented empirical results one can realize the exact reconstruction from the sub-Nyquist measurement 
by the proposed structure.  

Reference to Figure 4, a simple example is demonstrated to show the application of proposed CSF in signal 
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reconstruction, where the original signal which is the combination of two differential Gaussian pulses 

 
2

1 2
exp 3

t
x t t 


 

  
 

and a sine-modulated differential Gaussian pulse    
2

2 0 2
sin exp 4

t
x t t 


 

  
 

, where

0.6ns  and 9
0 2*10  rad are the input signal of the CSF, and the measured output signal is shown in Figure 

4(b). The 1/3-Nyquist complex-valued measurements are used to reconstruct the original time-domain sparse 
signal and the reconstructed result Figure 4(a).  

3.2 Compressive diffraction tomography 

Another important application of random convolution theory is the well-known diffraction tomography (DT), 
where the electrical and geometrical properties of an object can be reconstructed from the diffracted field 
(Devaney, 1984; Pan and Kak, 1983).  Under the assumption of weak scattering, one can use Born or Rytov 
approximations to derive the so-called Fourier diffraction projection theorem (FDPT), which relates the 2D 
Fourier transform of the object function to the measured data (Devaney, 1984; Pan and Kak, 1983). The input 
data of the FDPT algorithm and its variants should satisfy the so-called Nyquist-Shannon theorem to obtain the 
successful reconstruction; traditionally, the full-view and full-angle single-frequency measurements tightly 
packed over the sphere with radius k (k denotes the working wavenumber of homogeneous background media) 
are imperative. On the other hand, due to the use of Fourier transform the theoretical resolution limit of FDPT 
algorithm or its invariants are 0.5  ( is the working wavelength) (Devaney, 1984; Pan and Kak, 1983). Two 
appealing problems for the DT are how to design work system to relieve time-consuming data collection and 
how to improve the imaging resolution. In (Cui et al., 2004) by taking the rich information of decaying wave in 
the region of near field into account, an super-resolution imaging from the near-field measurement has been 
proposed within the framework of Born-based inversion. The further insight into the mechanism which leads to 
sub-wavelength resolution imaging from far-field measurement by means of multiple scattering has been carried 
out experimentally and theoretically in (Chen and Chew, 1998) and (Cui et al., 2004). On the other hand, the a 
prior information is that the gradient-magnitude image is highly sparse has been exploited to obtain perfect 
0.5  resolution reconstruction from few-view and limited-angle Fourier data (LaRoque et al., 2008). In this 
paper we will focus on the use of random media to realize the “compressive” measurement in order to obtain 
super-resolution reconstruction from highly sparse data.  

Here we restrict ourselves into two-dimensional scalar scattering problem as shown in Figure 1(b). The complex 
wave environment where the probed obstacles are located has been constructed; in particular, the random 
background medium to enforce the significant multi-path effect has been added. Under the assumption of Born 
approximation for weak scattering, the measurement signal  s jE k (j=1,2,…,M), representing the scattered fields 

whose working wavenumber is jk and is observed at Rr  due to incident field from the line source located at Sr , 

can be expressed as 

                    2 , ; , ;s j j R j in S j

Dinv

E k k G k E k d     r r r r r r                   (4) 

where   r is assumed to be frequency-independent contrast function of probed objects  , ;in S jE kr r is the 

incident wave due to the line source at
Sr ,i.e..  , ;R jG kr r is the Green’s function for the random background 

media, which can be obtained and stored via in-situ measurement or numerical computation. Now (4) can be 
reformulated in the form of the matrix-vector, namely, 

     y Ax n ,    1, Mn y � , M NA � , 1Nx �                    (5) 

where N is the total number for unknowns to be reconstructed, the entries of y  come from  , ;s R S jE kr r , the 

entries of x are  j r , n denotes the error due to measurement noise and discretization transformation from (4) 

to (5), the entries of A  are    , ; , ;j R i j in S i jk G k E k r r r r  ( 1, 2, ,i N  ). Further, if x can be sparsely 

represented in some orthogonal basis Ψ  such as the wavelet transform, the discrete cosine transform (DCT), 
and so on, i.e., x Ψθ , the equation (2.2) can be rewritten as 

      y AΨθ n ,    1, Mn y � , M NA � , 1Nθ �                  (6) 
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For the purpose of the super-resolution reconstruction from the measurements of single receiver/transmitter pair, 
the formed complex-valued matrix A is highly underdetermined, i.e., M N� . Obviously, the highly 
underdetermined system of linear equations (6) will generate infinite solutions. If one desires to narrow the 
choice to one well-defined solution, additional constraint should be imposed to guarantee a unique solution. To 
attack this, define the general optimization problem as 

 ˆ min x Jx x ,  s.t.   
2 2

  y Ax n                         (7) 

where  J x is introduced to evaluate the desirability of a would-be solution x . Usually, the squared l2-norm

 
2

J x x , a measure of energy, is employed to obtain a unique solution. It is well known that the measure of 

energy is not optimal, even be a disaster in some cases. Fortunately, all most of obstacles to be probed for many 
applications such as medical imaging, geophysics, optical imaging, and so on, are sparse, or compressible in 
some framework such as DCT, wavelet, and so on. Consequently, the alternative to l2-norm regularization is 
so-called sparsity-promoted one, i.e.,   1

J x Ψx .  

In the following a set of numerical simulations are provided to demonstrate above approach, where the 
investigation domain with size 2.4m by 2.4m is divided into the subgrids with size 

00.1 by 
00.1 , where 

0 1.2m  is the central working wavelength, and the used working wavelength ranging from
00.8  to

01.2  with 

space of 
00.004 . The probed objects (see Fig. 5(a)) are assumed to be sparse in Harr-wavelet domain and their 

reconstructions are shown in Figs. 5(b) and 5(c), where Fig. 5(b) is the result for diffraction tomography by 
l2-norm constraint while 5(c) is for l1-norm regularization.  

From Figs. 5, one can find that (a) the use of random media can realize the diffraction tomography even if just 
one pair of transmitter and receiver are employed which is impossible task if the objects are located at free space; 
(b) Although the reconstruction for the l2-constraint and random media background media can also yield visually 
reasonable reconstructions, its results are much poorer than the reconstruction with l1-norm constraints 
optimization, which can provide us super-resolution reconstruction. In summary, by compressive diffraction 
tomography (i.e., the random-media background plus sparse-enhance optimization), one can obtain exactly 
super-resolution reconstruction from the highly sparse data.  

4. Robust Sparse Signal Reconstruction 

In this section we will briefly discuss the algorithm of reconstructing sparse signal involved in previous sections. 
Generally, the considered problem formally can be stated via linear inverse problem with l1-norm based sparse 
constraint, in particular,  

                        
1

min x  s.t.  Ax b n                              (8) 

where the linear measurement operator A  mapping nX x � to mB b � , specifically, : X BA . The 
noise n  follows the Gaussian distribution with zero mean and covariance R , i.e.,  ,n 0 R� . In practice, due 
to non-idealities A in the analogy and digital implementation of CS, measurement mismatch or/and random 
malfunctioning of the instrument for measuring b, and other possible reasons, we have to explore the so-called 
robust optimization problem, in particular, 

             
1

min x  s.t.,        A A x b b n ,  ,  A b U                  (9) 

where U we introduce uncertainty set, or the set of admissible disturbance of  ,A b  for constraint on 
perturbation  , A b .  

In this paper we assume that the perturbation matrixA  and observationsb are sparse, which means just a 
limited number of entries of A  or/andb are non-zero and non-ignorable. Correspondingly, the resulting 
problem of (9) can be reformulated as 

 
  1

2

, , 1 2 31 1,1 1

ˆ ˆ ˆ, ,

arg min 

 

      



        A b x R

A b x

b b A A x x A b
      (10) 
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where
,1,1 , i ji j

a  A , 1 , 2 and 3 are three regularization factors to be determined carefully.  

We will provide new insight into problem of (9) within the framework of Bayesian analysis, whose distinguished 
advantages include 1) to do uncertainty analysis and 2) to estimate all of parameters involved adaptively. For the 
sake of simplicity, we assume A 0 . The first task of Bayesian analysis is to assign suitable probability 
distribution for uncertaintyb and unknown signal x . Traditionally, the Gaussian distribution is the favourite 
assumption for modelling uncertainty in many research areas such as pattern recognition, computer vision, data 
clustering, and interpretation problems. However, even when such justification is absent, the Gaussian remains a 
popular choice due to its attractive analytical properties. For example, log likelihoods are often quadratic in 
parameters of interest, which facilitates optimization, and a Gaussian prior can be combined with a Gaussian 
likelihood analytically in Bayesian inference. However, as mentioned previously, both of b  and x are not 
controlled by a Gaussian, then the model based on the Gaussian assumption favours a Gaussian estimate that 
may interpret the data set in a misleading way. The results in an incorrect model for the data set, especially when 
possible outliers exist in the data set. To model this case, the Laplacian distribution about the noise is commonly 
explored; however, due to computational intractability, the so-called hierarchical Gaussian model is used instead 
(Tipping and Faul, 2003; Ji et al., 2008), in particular, 

 ,b 0 B� N , and  ,x 0 Λ� N  

where  , 1,2,...,idiag i m B ,  , 1,2,...,idiag i n Λ , and the Gamma distribution is used to model the 
induced hyperparameters of B andΛ , i.e.,  

   1, expi i i i iGamma b d b  � , 

and 

   | 1, expi i i i i iGamma d d d   � . 

Now, the estimation of unknown x and induced hyperparameters of B  and Λ  can be readily made through the 
so-called type-I likelihood estimation, namely (Tipping and Faul, 2003; Li and Li., 2011; Ji et al., 2008), 

 ˆ max Pr | , xx x y Λ,B                            (11) 

where the the posterior probability of x follows  

                Pr | , Pr Pr | ,  x xx y Λ,B y | x,Λ,B x Λ μ ΣN           (12) 

Where 1T x xμ Σ A B y  and   11 1T   xΣ Λ A B A .  

Furthermore, we can estimate hyper-parameters of B and Λ  under the type-II likelihood estimation, namely,  

  max Λ,BΛ,B L                              (13) 

where        Pr | Pr | Pr Pr Λ,B y y Λ,B Λ B , 

   Pr | , by Λ,B 0 ΣN , 

and 

11 1 1T T        b xΣ B AΛA B B AΣ A B . 

After some basic manipulations, we can get 

   1

2

1 1

1 1
log log exp log exp

2 2

N N

i i i i i i
i i

b b d d 

 

             
y

y Σ
Σ yL       (14) 

Taking the gradient of L with respect toΛ, B , and setting them to be zeros, one can arrive at the closed-form 



www.ccsenet.org/apr                    Applied Physics Research                    Vol. 4, No. 1; February 2012 

                                                          ISSN 1916-9639   E-ISSN 1916-9647 38

solutions toΛ and B as (Li and Li., 2011) 

2
, ,i x i x ii                                     (15) 

and  

   2

,

T
i i i i

  x xy - Aμ AΣ A                            (16) 

As discussed above, we can see that the proposed approach within framework of Bayesian analysis belongs to 
iterative one, in particularly, repeatedly computing (12), (15) and (16), which is computation demanding. 

5. Conclusion 

Compressive sensing (CS) has made a paradigmatic step in the way information is presented, stored, transmitted 
and recovered, by which we can acquire and reconstruct sparse signals from sub-Nyquist incoherent 
measurements. Three key ingredients of successfully implementing compressed sampling technique are 
sparsible/compressible probed signal, reliable hardware design, and low-cost computational algorithm. In this 
paper, we have investigated two aspects about the robust sampling of sparse signal, in particular, the design of 
compressed sampling hardware and the robust reconstruction via sparse Bayesian analysis.  

A key to the success of CS is the design of the measurement ensemble satisfying the so-called restricted 
isometric property (RIP) or other rules. Theoretical and experimental results have shown that very limited 
random measurements of probed signals can suffice to provide valuable information of the signal subspace. On 
the other hand, the well-known time reversal theory shows that exploiting the multi-scattering of acoustic wave 
in random media can dramatically enhance the imaging resolution. In this paper, we first discussed the 
relationship between the wave scattering/propagation in complex medium and the classical compressive sensing 
theory; afterwards, study the design of circuit-level CS hardware prototype. The proposed variable sampling 
approach has the following advantages: 1) the generation of the measurement ensemble is computationally 
efficient and requires less memory; and 2) the proposed sampling hardware is universal from the viewpoint of 
compressive sensing, in particular, it can be applied to several transform domains and leads to simple 
implementations. In addition, another contribution of this paper is the development of robust sparse Bayesian 
analysis to address the robust optimization problem involved in sparse signal processing.  
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        （a）                             (b) 
Figure 1. (a) The sketch map of compressive sampling based inverse source, used for equation (2); (b) The 

sketch map of compressive sampling based inverse scattering, used for equation (3) 
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(a)                          (b)                    (c) 
Figure 2. (a)The photo of the proposed CSF based on the random microwave structure, and its (b) the 

amplitude-frequency response and (c) the phase-frequency response 

 

 

Figure 3. Probability of success of developed CSF shown in Fig. 2 in the recovery of the sparest signal when the 
length of unknown signal is 400 and 1/3-Nyquist measurements, where x-axis denotes the cardinality of the 

solution, y-axis denotes the probability of success of the developed CSF shown in Fig.2 

 

   

                      (a)                                       (b) 
Figure 4. (a) the original and reconstructed signal, (b) the real and imaginary part of output signal of the 

developed CSF shown in Fig.2 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t(ns)

Orignal Signal
Reconstructed Signal

0 2 4 6 8 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time (ns)

o
u

t s
ig

n
a

l

the real part of output signal

the imaginary part of output signal



www.ccsenet.org/apr                    Applied Physics Research                    Vol. 4, No. 1; February 2012 

Published by Canadian Center of Science and Education 41

 

       (a)                       (b)                    (c) 
Figure 5. Diffraction tomography reconstructions with Haar-wavelet transformation from sparse data (a) true 

objects, (b) the reconstruction via l2-norm constraint optimization and (c) reconstruction via l1-norm constraint 
optimization 

 


