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Abstract  

We explain dark matter and dark energy by our previous construct of a combined spacetime 4-manifold "U3," 
which is the graph of a diffeomorphism from the particle universe "U1" to the wave universe "U2." Dark matter 
and dark energy exist respectively as standing waves and traveling waves in U2, while ordinary matter and light 
are "particle waves" in U3. As such, our model is founded upon the wave-particle duality.  
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1. Introduction 

This paper is based on our previous construct of a "combined spacetime 4-manifold" (see Light, 2011) to explain 
the observed phenomena of dark matter and dark energy (see, e.g., [Amendola, L., Tsujikawa, S., 2010] for a 
summary of the existing theories and observations). Our model originated from the idea of a diagonal map in 
differential geometry. We relate a particle universe M[1] to a wave universe M[2] and combine them into one 
common universe M[3]. 

Over the years gravitational anomalies have brought up a number of theories or themes of study, such as dual 
mass (cf. e.g., [Cates, et al., 1988]), shadow matter (cf. e.g., [Tosa, Okubo, 1987]), gravitational dyon (cf. e.g., 
[Tübingen, 1987]), fifth force (cf. e.g., [Riveros, et al., 1989]), dark matter (cf. e.g., [Anderson, et al., 1989]), 
and dark energy. That dark matter and dark energy have entered the center stage of physics is attributed to the 
existence of indisputable cosmological observations. Unexplained gravitational accelerations of astral bodies 
cemented the idea of dark matter, and accelerated expansion of the Universe indicated the existence of dark 
energy.  

Before proceeding to our analysis in Section 2, we present a general description of our model and a brief account 
of its relations to existing theories. We hypothesize that our recognized Universe is made up of two coincidental 
copies of spacetimes, as maybe pictured as two identical stamps glued together. The visible copy contains 
particles engaging in all the familiar four forces, and the invisible copy contains electromagnetic waves engaging 
only in gravity. We united the two sets of gravitational motions into one by an observation of the form invariance 
of the time×time components of the metric tensors as evolved from two independent sets of Einstein Field 
Equations, each with its own distinct gravitational constant. After deriving the value of the gravitational constant 
of the wave universe in particular, we found it to be so large as to cause easily an astronomically-sized black hole. 
We thus contemplate the possibility that a formation of such a “Black Hole” (capitalized for subsequent 
referencing) gave the Big Bang that created our visible universe of particles. To be specific, the infinite 
spacetime curvature at the center of the Black Hole altered the hitherto pure electromagnetic waves into 
photon-waves and the set of photon-waves developed and inflated into a distinct universe of particle-waves (á la 
[Feynman, 1963]). By an observation of Feynman’s analysis of the electromagnetic mass of an electron (ibid.), 
we set the energy distribution of a (particle, wave) to be (0.75, 0.25). We propose that the dark matter and dark 
energy are respectively the standing and traveling waves in the Black Hole that did not turn into photon-waves 
following the Big Bang. Fanciful as the above description might sound, our model of a combined spacetime 
4-manifold of the Universe actually has already been well treated by standard physics, as explained below. 
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First, the basic quantum mechanical setup of brakets in a Hilbert space effectively provided a vehicle to analyze 
our particle-waves, except for the difference that all energies were quantized as particles and waves were 
relegated to probabilities. Schrödinger’s wave equation with the imaginary number i formally began to analyze 
the wave dynamics in our Black Hole, which, by the way, had actually been done by Maxwell isomorphically in 
real terms more than sixty years ago. Dirac gave a description of our electron-wave and showed how a 
particle-wave rotated within our combined 4-manifold. His well-known interpretations of the positron and 
vacuum differed from ours, however. We consider a positron as a particle-wave resulting from an interchange of 
the ordering in the cross product of the electric and magnetic fields in the Black Hole and vacuum as a region 
occupied exclusively by the dark energy as cast in our model. The Standard Model provided critical treatments 
of our wave universe in conjunction with our particle universe, establishing fundamental laws of particle 
formations and interactions. Concerning gravity, the Calabi-Yau manifolds with three spatial complex 
dimensions,         212121

~,~~,~~,~ zizyiyxixY  , can specialize into         222
~,0~,0~,0 ziyixiY   

for our Black Hole. In addition, if we identify our electromagnetic waves with some particular 3-branes and 
embed our combined 4-manifold,      iziyixitzyxt ,,,,,,  , into      Yitzyxt ,,, , then our model 

becomes a special case of the 11-dimensional M-theory by Witten. In passing, we note that dark matter in string 
theories has been considered as supersymmetric particles, and dark energy as that resulting from manifold 
compactification.   

The following Section 2 will first introduce our construct of a combined 4-manifold as based on a pair of 
Einstein Field Equations. Then we unify the two sets of gravitational motions by establishing three gravitational 
constants,  1G ,  2G , and  3G , respectively of M[1], M[2], and M[3]. With  2G  ascertained, we proceed to 
examine the possible existence of dark matter and dark energy in M[2]. We distinguish our approach by a 
4-dimensional Riemannian geometry that adheres to Einstein's General Relativity and is free from proposing 
new particles. Finally Section 3 will conclude with a few summary remarks. 

2. Analysis 

We begin with a definition of a combined spacetime 4-manifold 

                        ,,,: 2121213 hismdiffeomorpanyhpphpp  MMM         (2.0) 

where M[1] contains particles and M[2], electromagnetic waves as derived from Maxwell equations for free spaces. 
We note that there can exist two kinds of waves in M[1]: traveling and standing. Consider the superposition of 
two traveling waves at speed c ≡ ω/k in opposite directions: 

                          ,coscos2coscos kctkxtkxtkx                 (2.1) 

i.e., resulting in a standing wave. 

By General Relativity, M[1] and M[2] observe Einstein Field Equations, 
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 iG  = the gravitational constant of M[i]. 
But 
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and 
 3g  being the inner product of the direct sum of the tangent spaces 
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suggests from standard linear algebra that 
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                       213 gbgag                                 (2.5) 

for some constants a, b > 0. Substituting Equation (2.3) into (2.5), we have 
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Passing to the Newtonian limit, we then have 
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or 
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Where            .213213 MMMandmmm   That is, we have unified the two sets of gravitational 

motions. 

Setting 
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we can rewrite the above Equation (2.8) as 
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where  3G  = the recognized gravitational constant, and M̂  = the laboratory-measured mass. That is, 
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Concerning 
 

 3

1

1 M

M
 , we consider the discrepancy in the electromagnetic mass of an electron as measured in 
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a stationary state versus in a moving state with a constant velocity of .cV  In [Feynman, II-28-4, 1963], one 

finds (cf. also [Moylan, 1995] for this well-known problem) 

                                   .
4

3
00   VV mm                                 (2.14) 

Since electromagnetic forces take place by exchanging virtue particles in M[1] and yet motions necessarily take 
place in M[3], we attribute 0Vm  to M[1] and 0Vm  to M[3], so that 

                                     .
4

3
1                                      (2.15) 

As such, we have 

                                  .4.02.1 21   and                             (2.16) 

We next derive the value of 
 2G , but first we define the following notations: 
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In order to apply General Relativity in our derivation, we set the Planck length meterP
3510:   as the lower 

limit of electromagnetic wave lengths under consideration, i.e.,  ,, P  or equivalently, 
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   Planckj Hz  ,01   as observed from a laboratory frame  1S  in M[1]. Consider  2
jE  (  2ˆ jE , recall the 

definition in (2.13), where jÊ  is the laboratory-measured energy of j) within its wave length 
j , i.e.,  2

jE  as 
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2
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gravitational effect of  2
jE  on  2S  is as if the ball B of energy  2
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have 
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Since the frequency  2
j  of  2

jE  relative to frame  2S  is exactly 1 cycle, we have 
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so that 
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Thus, 
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where NLT involving the Planck length is outside the above indicated domain of calculus. Letting 
 1

j  

approach Planck  in Equation (2.21), we see that the positive left-hand-side cannot equal the negative 

right-hand-side. We now need examine closely the isomorphism: 

   .cos kxtietkx    

This is a covering map of R onto the circle S¹. Setting ω = 2π radians/second for convenience, we see that as t 
increases from 0 second to 1 second linearly along R,  ti   increases from  second0 i  to  second1 i  

clockwise along S¹ so that     iiradiansit  2secondsecond/2   and 12  ie 
 cycle 

clockwise. I.e., while t registers time along R,  ti   registers time along S¹. Simply said, if t = 2011 years, then 

it = 2011 i years would mean that other than the 12-month progression there had been no changes year after year 
since t = 0 year. Since electromagnetic waves by nature are cyclic, the proper unit of time must be (i second). 
Thus, we revise Equation (2.19) to 
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Consequently, Equation (2.21) becomes 
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where 
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is the uncertainty energy due to the fact that 
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Recalling from Equation (2.16) that   4.02  , we then have 
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We now calculate the Schwarzschild radius for M[2] by solving 
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for  2R . From Equations (2.13) and (2.16), we have 
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Since      11 ˆMM the observed mass of the Universe 2.11051  kg , we have 
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Thus, 

                      ,101082 metersR                               (2.32) 

which is greater than the recognized radius for M[1], 1026 meters. As such, we consider the possibility that prior to 
the Big Bang there had only been M[2]; because of the large  2G  an astronomical black hole ]2[MB   came 
into being - - the Big Bang. B transformed some of the therein contained electromagnetic waves into 
photon-waves, and the collection of photons formed M[1]. (cf. [Frolov et al. 1990] for the possibility that a black 
hole can give rise to a macroscopic universe), where all particles ultimately were made up of photons via

  epositroneelectron , or superposition of electromagnetic waves, manifested as matter waves 
by de Broglie. 

In conclusion, there exist four kinds of objects in the Universe M[3]: photons and matter in M[1] (both of which 
carry (1/3) of their energies in M[2]), and the non-transformed electromagnetic waves in ]2[MB  , which can 
be traveling or standing and are respectively shown as dark energy or dark matter in M[1].  

3. Summary remarks  

We complete this paper with a summary account of some of the distinct features of our model of a combined 
spacetime 4-manifold of the Universe. (1) Foremost, our model is constructed upon two sets of Einstein Field 
Equations, involving three gravitational constants and having no cosmological constants. (2) Our model makes 
quantum black holes in the particle universe gateways to and from the Black Holes in the wave universe, so that 
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any point particle-wave such as the electron-wave does not have an infinite energy density. Point particle-waves 
by their own gravity cause quantum black holes, which continually send them “back” to the Black Hole in the 
wave universe to “resume” as pure invisible electromagnetic waves, although only to re-emerge in the particle 
universe according to the quantum creation and annihilation operators. (3) Our combined 4-manifold 
corresponds directly to the particle-wave duality. Our model provides energy contents to the probabilistic 
wavefunctions. The quotient spacetimes in ]2[MB   explain why the complex number i is indispensable in 
quantum mechanics (cf. [Barbour, 1993]) and why quantum entanglements are possible. In [Light, 2011] we 
used the quotient-spacetime geometry to explain the double-slit experiment. We showed that the ejected 
photon-wave discerned the setup of the slits by the distance in the Black Hole of the wave universe, not by the 
distance in the particle universe. This long-distance information sharing in the particle universe via the 
equivalence classes of the spacetimes in the Black Hole of the wave universe should play an important role in 
quantum computing. To go one step further, we suggest experiments on long-distance quantum tunneling as a 
critical test of our model.  
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